1
|
Bonzano S, Dallorto E, Bovetti S, Studer M, De Marchis S. Mitochondrial regulation of adult hippocampal neurogenesis: Insights into neurological function and neurodevelopmental disorders. Neurobiol Dis 2024; 199:106604. [PMID: 39002810 DOI: 10.1016/j.nbd.2024.106604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Mitochondria are essential regulators of cellular energy metabolism and play a crucial role in the maintenance and function of neuronal cells. Studies in the last decade have highlighted the importance of mitochondrial dynamics and bioenergetics in adult neurogenesis, a process that significantly influences cognitive function and brain plasticity. In this review, we examine the mechanisms by which mitochondria regulate adult neurogenesis, focusing on the impact of mitochondrial function on the behavior of neural stem/progenitor cells and the maturation and plasticity of newborn neurons in the adult mouse hippocampus. In addition, we explore the link between mitochondrial dysfunction, adult hippocampal neurogenesis and genes associated with cognitive deficits in neurodevelopmental disorders. In particular, we provide insights into how alterations in the transcriptional regulator NR2F1 affect mitochondrial dynamics and may contribute to the pathophysiology of the emerging neurodevelopmental disorder Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS). Understanding how genes involved in embryonic and adult neurogenesis affect mitochondrial function in neurological diseases might open new directions for therapeutic interventions aimed at boosting mitochondrial function during postnatal life.
Collapse
Affiliation(s)
- Sara Bonzano
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Eleonora Dallorto
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy; Institute de Biologie Valrose (iBV), Université Cote d'Azur (UCA), CNRS 7277, Inserm 1091, Avenue Valrose 28, Nice 06108, France
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Michèle Studer
- Institute de Biologie Valrose (iBV), Université Cote d'Azur (UCA), CNRS 7277, Inserm 1091, Avenue Valrose 28, Nice 06108, France
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy.
| |
Collapse
|
2
|
Ehlers JS, Bracke K, von Bohlen Und Halbach V, Siegerist F, Endlich N, von Bohlen Und Halbach O. Morphological and behavioral analysis of Slc35f1-deficient mice revealed no neurodevelopmental phenotype. Brain Struct Funct 2023; 228:895-906. [PMID: 36951990 PMCID: PMC10147817 DOI: 10.1007/s00429-023-02629-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023]
Abstract
SLC35F1 is a member of the sugar-like carrier (SLC) superfamily that is expressed in the mammalian brain. Malfunction of SLC35F1 in humans is associated with neurodevelopmental disorders. To get insight into the possible roles of Slc35f1 in the brain, we generated Slc35f1-deficient mice. The Slc35f1-deficient mice are viable and survive into adulthood, which allowed examining adult Slc35f1-deficient mice on the anatomical as well as behavioral level. In humans, mutation in the SLC35F1 gene can induce a Rett syndrome-like phenotype accompanied by intellectual disability (Fede et al. Am J Med Genet A 185:2238-2240, 2021). The Slc35f1-deficient mice, however, display only a very mild phenotype and no obvious deficits in learning and memory as, e.g., monitored with the novel object recognition test or the Morris water maze test. Moreover, neuroanatomical parameters of neuronal plasticity (as dendritic spines and adult hippocampal neurogenesis) are also unaltered. Thus, Slc35f1-deficient mice display no major alterations that resemble a neurodevelopmental phenotype.
Collapse
Affiliation(s)
- Julia Sophie Ehlers
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Katharina Bracke
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Viola von Bohlen Und Halbach
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Florian Siegerist
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Nicole Endlich
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Oliver von Bohlen Und Halbach
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany.
| |
Collapse
|
3
|
Hsieh MY, Tuan LH, Chang HC, Wang YC, Chen CH, Shy HT, Lee LJ, Gau SSF. Altered synaptic protein expression, aberrant spine morphology, and impaired spatial memory in Dlgap2 mutant mice, a genetic model of autism spectrum disorder. Cereb Cortex 2022; 33:4779-4793. [PMID: 36169576 DOI: 10.1093/cercor/bhac379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/14/2022] Open
Abstract
A microdeletion of approximately 2.4 Mb at the 8p23 terminal region has been identified in a Taiwanese autistic boy. Among the products transcribed/translated from genes mapped in this region, the reduction of DLGAP2, a postsynaptic scaffold protein, might be involved in the pathogenesis of autism spectrum disorder (ASD). DLGAP2 protein was detected in the hippocampus yet abolished in homozygous Dlgap2 knockout (Dlgap2 KO) mice. In this study, we characterized the hippocampal phenotypes in Dlgap2 mutant mice. Dlgap2 KO mice exhibited impaired spatial memory, indicating poor hippocampal function in the absence of DLGAP2. Aberrant expressions of postsynaptic proteins, including PSD95, SHANK3, HOMER1, GluN2A, GluR2, mGluR1, mGluR5, βCAMKII, ERK1/2, ARC, BDNF, were noticed in Dlgap2 mutant mice. Further, the spine density was increased in Dlgap2 KO mice, while the ratio of mushroom-type spines was decreased. We also observed a thinner postsynaptic density thickness in Dlgap2 KO mice at the ultrastructural level. These structural changes found in the hippocampus of Dlgap2 KO mice might be linked to impaired hippocampus-related cognitive functions such as spatial memory. Mice with Dlgap2 deficiency, showing signs of intellectual disability, a common co-occurring condition in patients with ASD, could be a promising animal model which may advance our understanding of ASD.
Collapse
Affiliation(s)
- Ming-Yen Hsieh
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Heng Tuan
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,School of Medicine, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.,Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ho-Ching Chang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chun Wang
- Department of Otolaryngology, Head and Neck Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Horng-Tzer Shy
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Delprato A, Xiao E, Manoj D. Connecting DCX, COMT and FMR1 in social behavior and cognitive impairment. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2022; 18:7. [PMID: 35590332 PMCID: PMC9121553 DOI: 10.1186/s12993-022-00191-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Genetic variants of DCX, COMT and FMR1 have been linked to neurodevelopmental disorders related to intellectual disability and social behavior. In this systematic review we examine the roles of the DCX, COMT and FMR1 genes in the context of hippocampal neurogenesis with respect to these disorders with the aim of identifying important hubs and signaling pathways that may bridge these conditions. Taken together our findings indicate that factors connecting DCX, COMT, and FMR1 in intellectual disability and social behavior may converge at Wnt signaling, neuron migration, and axon and dendrite morphogenesis. Data derived from genomic research has identified a multitude of genes that are linked to brain disorders and developmental differences. Information about where and how these genes function and cooperate is lagging behind. The approach used here may help to shed light on the biological underpinnings in which key genes interface and may prove useful for the testing of specific hypotheses.
Collapse
Affiliation(s)
- Anna Delprato
- Department of Research and Education, BioScience Project, Wakefield, MA, 01880, USA.
| | - Emily Xiao
- Department of Research and Education, BioScience Project, Wakefield, MA, 01880, USA.,Alexander Mackenzie High School, Richmond Hill, ON, 14519, Canada
| | - Devika Manoj
- Department of Research and Education, BioScience Project, Wakefield, MA, 01880, USA.,Lambert High School, Suwanee, GA, 30024, USA
| |
Collapse
|
5
|
Castillon C, Gonzalez L, Domenichini F, Guyon S, Da Silva K, Durand C, Lestaevel P, Vaillend C, Laroche S, Barnier JV, Poirier R. The intellectual disability PAK3 R67C mutation impacts cognitive functions and adult hippocampal neurogenesis. Hum Mol Genet 2021; 29:1950-1968. [PMID: 31943058 DOI: 10.1093/hmg/ddz296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
The link between mutations associated with intellectual disability (ID) and the mechanisms underlying cognitive dysfunctions remains largely unknown. Here, we focused on PAK3, a serine/threonine kinase whose gene mutations cause X-linked ID. We generated a new mutant mouse model bearing the missense R67C mutation of the Pak3 gene (Pak3-R67C), known to cause moderate to severe ID in humans without other clinical signs and investigated hippocampal-dependent memory and adult hippocampal neurogenesis. Adult male Pak3-R67C mice exhibited selective impairments in long-term spatial memory and pattern separation function, suggestive of altered hippocampal neurogenesis. A delayed non-matching to place paradigm testing memory flexibility and proactive interference, reported here as being adult neurogenesis-dependent, revealed a hypersensitivity to high interference in Pak3-R67C mice. Analyzing adult hippocampal neurogenesis in Pak3-R67C mice reveals no alteration in the first steps of adult neurogenesis, but an accelerated death of a population of adult-born neurons during the critical period of 18-28 days after their birth. We then investigated the recruitment of hippocampal adult-born neurons after spatial memory recall. Post-recall activation of mature dentate granule cells in Pak3-R67C mice was unaffected, but a complete failure of activation of young DCX + newborn neurons was found, suggesting they were not recruited during the memory task. Decreased expression of the KCC2b chloride cotransporter and altered dendritic development indicate that young adult-born neurons are not fully functional in Pak3-R67C mice. We suggest that these defects in the dynamics and learning-associated recruitment of newborn hippocampal neurons may contribute to the selective cognitive deficits observed in this mouse model of ID.
Collapse
Affiliation(s)
- Charlotte Castillon
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Laurine Gonzalez
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Florence Domenichini
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Sandrine Guyon
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Kevin Da Silva
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Christelle Durand
- Institute for Radiological Protection and Nuclear Safety (IRSN), Research department on the Biological and Health Effects of Ionizing Radiation (SESANE), Laboratory of experimental Radiotoxicology and Radiobiology (LRTOX), 92260 Fontenay-aux-Roses, France
| | - Philippe Lestaevel
- Institute for Radiological Protection and Nuclear Safety (IRSN), Research department on the Biological and Health Effects of Ionizing Radiation (SESANE), Laboratory of experimental Radiotoxicology and Radiobiology (LRTOX), 92260 Fontenay-aux-Roses, France
| | - Cyrille Vaillend
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Serge Laroche
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Jean-Vianney Barnier
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Roseline Poirier
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
6
|
Serrano C, Dos Santos M, Kereselidze D, Beugnies L, Lestaevel P, Poirier R, Durand C. Targeted Dorsal Dentate Gyrus or Whole Brain Irradiation in Juvenile Mice Differently Affects Spatial Memory and Adult Hippocampal Neurogenesis. BIOLOGY 2021; 10:biology10030192. [PMID: 33806303 PMCID: PMC8002088 DOI: 10.3390/biology10030192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
The cognitive consequences of postnatal brain exposure to ionizing radiation (IR) at low to moderate doses in the adult are not fully established. Because of the advent of pediatric computed tomography scans used for head exploration, improving our knowledge of these effects represents a major scientific challenge. To evaluate how IR may affect the developing brain, models of either whole brain (WB) or targeted dorsal dentate gyrus (DDG) irradiation in C57Bl/6J ten-day-old male mice were previously developed. Here, using these models, we assessed and compared the effect of IR (doses range: 0.25-2 Gy) on long-term spatial memory in adulthood using a spatial water maze task. We then evaluated the effects of IR exposure on adult hippocampal neurogenesis, a form of plasticity involved in spatial memory. Three months after WB exposure, none of the doses resulted in spatial memory impairment. In contrast, a deficit in memory retrieval was identified after DDG exposure for the dose of 1 Gy only, highlighting a non-monotonic dose-effect relationship in this model. At this dose, a brain irradiated volume effect was also observed when studying adult hippocampal neurogenesis in the two models. In particular, only DDG exposure caused alteration in cell differentiation. The most deleterious effect observed in adult hippocampal neurogenesis after targeted DDG exposure at 1 Gy may contribute to the memory retrieval deficit in this model. Altogether these results highlight the complexity of IR mechanisms in the brain that can lead or not to cognitive disorders and provide new knowledge of interest for the radiation protection of children.
Collapse
Affiliation(s)
- Céline Serrano
- Laboratory of Experimental Radiotoxicology and Radiobiology (LRTOX), Research Department on the Biological and Health Effects of Ionizing Radiation (SESANE), Institute for Radiological Protection and Nuclear Safety (IRSN), 92260 Fontenay-aux-Roses, France; (C.S.); (D.K.); (L.B.); (P.L.)
| | - Morgane Dos Santos
- Laboratory of Radiobiology of Accidental Exposure (LRAcc), Research Department in Radiobiology and Regenerative Medicine (SERAMED), Institute for Radiological Protection and Nuclear Safety (IRSN), 92260 Fontenay-aux-Roses, France;
| | - Dimitri Kereselidze
- Laboratory of Experimental Radiotoxicology and Radiobiology (LRTOX), Research Department on the Biological and Health Effects of Ionizing Radiation (SESANE), Institute for Radiological Protection and Nuclear Safety (IRSN), 92260 Fontenay-aux-Roses, France; (C.S.); (D.K.); (L.B.); (P.L.)
| | - Louison Beugnies
- Laboratory of Experimental Radiotoxicology and Radiobiology (LRTOX), Research Department on the Biological and Health Effects of Ionizing Radiation (SESANE), Institute for Radiological Protection and Nuclear Safety (IRSN), 92260 Fontenay-aux-Roses, France; (C.S.); (D.K.); (L.B.); (P.L.)
| | - Philippe Lestaevel
- Laboratory of Experimental Radiotoxicology and Radiobiology (LRTOX), Research Department on the Biological and Health Effects of Ionizing Radiation (SESANE), Institute for Radiological Protection and Nuclear Safety (IRSN), 92260 Fontenay-aux-Roses, France; (C.S.); (D.K.); (L.B.); (P.L.)
| | - Roseline Poirier
- Paris-Saclay Neuroscience Institute (Neuro-PSI), University Paris-Saclay, UMR 9197 CNRS, F-91405 Orsay, France
- Correspondence: (R.P.); (C.D.)
| | - Christelle Durand
- Laboratory of Experimental Radiotoxicology and Radiobiology (LRTOX), Research Department on the Biological and Health Effects of Ionizing Radiation (SESANE), Institute for Radiological Protection and Nuclear Safety (IRSN), 92260 Fontenay-aux-Roses, France; (C.S.); (D.K.); (L.B.); (P.L.)
- Correspondence: (R.P.); (C.D.)
| |
Collapse
|
7
|
Vieira MS, Santos AK, Vasconcellos R, Goulart VAM, Parreira RC, Kihara AH, Ulrich H, Resende RR. Neural stem cell differentiation into mature neurons: Mechanisms of regulation and biotechnological applications. Biotechnol Adv 2018; 36:1946-1970. [PMID: 30077716 DOI: 10.1016/j.biotechadv.2018.08.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
The abilities of stem cells to self-renew and form different mature cells expand the possibilities of applications in cell-based therapies such as tissue recomposition in regenerative medicine, drug screening, and treatment of neurodegenerative diseases. In addition to stem cells found in the embryo, various adult organs and tissues have niches of stem cells in an undifferentiated state. In the central nervous system of adult mammals, neurogenesis occurs in two regions: the subventricular zone and the dentate gyrus in the hippocampus. The generation of the different neural lines originates in adult neural stem cells that can self-renew or differentiate into astrocytes, oligodendrocytes, or neurons in response to specific stimuli. The regulation of the fate of neural stem cells is a finely controlled process relying on a complex regulatory network that extends from the epigenetic to the translational level and involves extracellular matrix components. Thus, a better understanding of the mechanisms underlying how the process of neurogenesis is induced, regulated, and maintained will provide elues for development of novel for strategies for neurodegenerative therapies. In this review, we focus on describing the mechanisms underlying the regulation of the neuronal differentiation process by transcription factors, microRNAs, and extracellular matrix components.
Collapse
Affiliation(s)
- Mariana S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Anderson K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rebecca Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Vânia A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo C Parreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Alexandre H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil.
| |
Collapse
|
8
|
Selective alteration of adult hippocampal neurogenesis and impaired spatial pattern separation performance in the RSK2-deficient mouse model of Coffin-Lowry syndrome. Neurobiol Dis 2018; 115:69-81. [PMID: 29627578 DOI: 10.1016/j.nbd.2018.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/07/2018] [Accepted: 04/04/2018] [Indexed: 01/12/2023] Open
Abstract
Adult neurogenesis is involved in certain hippocampus-dependent cognitive functions and is linked to psychiatric diseases including intellectual disabilities. The Coffin-Lowry syndrome (CLS) is a developmental disorder caused by mutations in the Rsk2 gene and characterized by intellectual disabilities associated with growth retardation. How RSK2-deficiency leads to cognitive dysfunctions in CLS is however poorly understood. Here, using Rsk2 Knock-Out mice, we characterized the impact of RSK2 deficiency on adult hippocampal neurogenesis in vivo. We report that the absence of RSK2 does not affect basal proliferation, differentiation and survival of dentate gyrus adult-born neurons but alters the maturation progression of young immature newborn neurons. Moreover, when RSK2-deficient mice were submitted to spatial learning, in contrast to wild-type mice, proliferation of adult generated neurons was decreased and no pro-survival effect of learning was observed. Thus, learning failed to recruit a selective population of young newborn neurons in association with deficient long-term memory recall. Given the proposed role of the dentate gyrus and of adult-generated newborn neurons in hippocampal-dependent pattern separation function, we explored this function in a delayed non-matching to place task and in an object-place pattern separation task and report severe deficits in spatial pattern separation in Rsk2-KO mice. Together, this study reveals a previously unknown role for RSK2 in the early stages of maturation and learning-dependent involvement of adult-born dentate gyrus neurons. These alterations associated with a deficit in the ability of RSK2-deficient mice to finely discriminate relatively similar spatial configurations, may contribute to cognitive dysfunction in CLS.
Collapse
|
9
|
Pons-Espinal M, de Luca E, Marzi MJ, Beckervordersandforth R, Armirotti A, Nicassio F, Fabel K, Kempermann G, De Pietri Tonelli D. Synergic Functions of miRNAs Determine Neuronal Fate of Adult Neural Stem Cells. Stem Cell Reports 2017; 8:1046-1061. [PMID: 28330621 PMCID: PMC5390108 DOI: 10.1016/j.stemcr.2017.02.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 02/04/2023] Open
Abstract
Adult neurogenesis requires the precise control of neuronal versus astrocyte lineage determination in neural stem cells. While microRNAs (miRNAs) are critically involved in this step during development, their actions in adult hippocampal neural stem cells (aNSCs) has been unclear. As entry point to address that question we chose DICER, an endoribonuclease essential for miRNA biogenesis and other RNAi-related processes. By specific ablation of Dicer in aNSCs in vivo and in vitro, we demonstrate that miRNAs are required for the generation of new neurons, but not astrocytes, in the adult murine hippocampus. Moreover, we identify 11 miRNAs, of which 9 have not been previously characterized in neurogenesis, that determine neurogenic lineage fate choice of aNSCs at the expense of astrogliogenesis. Finally, we propose that the 11 miRNAs sustain adult hippocampal neurogenesis through synergistic modulation of 26 putative targets from different pathways. Dicer depletion in aNSCs impairs neurogenesis and stimulates astrogliogenesis Synergy of 11 miRNAs sustains neuronal fate of aNSCs miRNA converge on multiple targets in different pathways to induce neurogenesis
Collapse
Affiliation(s)
- Meritxell Pons-Espinal
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Emanuela de Luca
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Matteo Jacopo Marzi
- Center for Genomic Science, Istituto Italiano di Tecnologia, IFOM-IEO CAMPUS, Via Adamello 16, 20139 Milan, Italy
| | - Ruth Beckervordersandforth
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Andrea Armirotti
- D3 PharmaChemistry, Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Francesco Nicassio
- Center for Genomic Science, Istituto Italiano di Tecnologia, IFOM-IEO CAMPUS, Via Adamello 16, 20139 Milan, Italy
| | - Klaus Fabel
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Arnoldstraße 18/18b, 01307 Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Arnoldstraße 18/18b, 01307 Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Davide De Pietri Tonelli
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.
| |
Collapse
|
10
|
Pharmacological rescue of adult hippocampal neurogenesis in a mouse model of X-linked intellectual disability. Neurobiol Dis 2017; 100:75-86. [PMID: 28088401 PMCID: PMC5346071 DOI: 10.1016/j.nbd.2017.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/23/2016] [Accepted: 01/10/2017] [Indexed: 01/17/2023] Open
Abstract
Oligophrenin-1 (OPHN1) is a Rho GTPase activating protein whose mutations cause X-linked intellectual disability (XLID). How loss of function of Ophn1 affects neuronal development is only partly understood. Here we have exploited adult hippocampal neurogenesis to dissect the steps of neuronal differentiation that are affected by Ophn1 deletion. We found that mice lacking Ophn1 display a reduction in the number of newborn neurons in the dentate gyrus. A significant fraction of the Ophn1-deficient newly generated neurons failed to extend an axon towards CA3, and showed an altered density of dendritic protrusions. Since Ophn1-deficient mice display overactivation of Rho-associated protein kinase (ROCK) and protein kinase A (PKA) signaling, we administered a clinically approved ROCK/PKA inhibitor (fasudil) to correct the neurogenesis defects. While administration of fasudil was not effective in rescuing axon formation, the same treatment completely restored spine density to control levels, and enhanced the long-term survival of adult-born neurons in mice lacking Ophn1. These results identify specific neurodevelopmental steps that are impacted by Ophn1 deletion, and indicate that they may be at least partially corrected by pharmacological treatment.
Collapse
|
11
|
Bowers M, Jessberger S. Linking adult hippocampal neurogenesis with human physiology and disease. Dev Dyn 2016; 245:702-9. [PMID: 26890418 DOI: 10.1002/dvdy.24396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 01/13/2023] Open
Abstract
We here review the existing evidence linking adult hippocampal neurogenesis and human brain function in physiology and disease. Furthermore, we aim to point out where evidence is missing, highlight current promising avenues of investigation, and suggest future tools and approaches to foster the link between life-long neurogenesis and human brain function. Developmental Dynamics 245:702-709, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Megan Bowers
- Laboratory of Neural Plasticity, Faculty of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculty of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Karmiloff-Smith A, Al-Janabi T, D'Souza H, Groet J, Massand E, Mok K, Startin C, Fisher E, Hardy J, Nizetic D, Tybulewicz V, Strydom A. The importance of understanding individual differences in Down syndrome. F1000Res 2016; 5:F1000 Faculty Rev-389. [PMID: 27019699 PMCID: PMC4806704 DOI: 10.12688/f1000research.7506.1] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2016] [Indexed: 12/24/2022] Open
Abstract
In this article, we first present a summary of the general assumptions about Down syndrome (DS) still to be found in the literature. We go on to show how new research has modified these assumptions, pointing to a wide range of individual differences at every level of description. We argue that, in the context of significant increases in DS life expectancy, a focus on individual differences in trisomy 21 at all levels-genetic, cellular, neural, cognitive, behavioral, and environmental-constitutes one of the best approaches for understanding genotype/phenotype relations in DS and for exploring risk and protective factors for Alzheimer's disease in this high-risk population.
Collapse
Affiliation(s)
- Annette Karmiloff-Smith
- Centre for Brain & Cognitive Development, Birkbeck University of London, London, WC1E 7HX, UK
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
| | - Tamara Al-Janabi
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
- Division of Psychiatry, University College London, London, W1T 7NF, UK
| | - Hana D'Souza
- Centre for Brain & Cognitive Development, Birkbeck University of London, London, WC1E 7HX, UK
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
| | - Jurgen Groet
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
| | - Esha Massand
- Centre for Brain & Cognitive Development, Birkbeck University of London, London, WC1E 7HX, UK
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
| | - Kin Mok
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
- Department of Molecular Neuroscience, University College London Institute of Neurology, London, WC1N 3BG, UK
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Carla Startin
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
- Division of Psychiatry, University College London, London, W1T 7NF, UK
| | - Elizabeth Fisher
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
- Department of Neurodegenerative Disease, Institute of Neurology, London, WC1N 3BG, UK
| | - John Hardy
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
- Department of Molecular Neuroscience, University College London Institute of Neurology, London, WC1N 3BG, UK
| | - Dean Nizetic
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Biopolis, 138673, Singapore
| | - Victor Tybulewicz
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
- Francis Crick Institute, London, NW7 1AA, UK
- Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Andre Strydom
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
- Division of Psychiatry, University College London, London, W1T 7NF, UK
| |
Collapse
|
13
|
Fernández-Hernández I, Rhiner C. New neurons for injured brains? The emergence of new genetic model organisms to study brain regeneration. Neurosci Biobehav Rev 2015; 56:62-72. [PMID: 26118647 DOI: 10.1016/j.neubiorev.2015.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/15/2022]
Abstract
Neuronal circuits in the adult brain have long been viewed as static and stable. However, research in the past 20 years has shown that specialized regions of the adult brain, which harbor adult neural stem cells, continue to produce new neurons in a wide range of species. Brain plasticity is also observed after injury. Depending on the extent and permissive environment of neurogenic regions, different organisms show great variability in their capacity to replace lost neurons by endogenous neurogenesis. In Zebrafish and Drosophila, the formation of new neurons from progenitor cells in the adult brain was only discovered recently. Here, we compare properties of adult neural stem cells, their niches and regenerative responses from mammals to flies. Current models of brain injury have revealed that specific injury-induced genetic programs and comparison of neuronal fitness are implicated in brain repair. We highlight the potential of these recently implemented models of brain regeneration to identify novel regulators of stem cell activation and regenerative neurogenesis.
Collapse
Affiliation(s)
| | - Christa Rhiner
- Institute of Cell Biology, IZB, Baltzerstrasse 4, 3012 Bern, Switzerland.
| |
Collapse
|
14
|
Pons-Espinal M, Martinez de Lagran M, Dierssen M. Environmental enrichment rescues DYRK1A activity and hippocampal adult neurogenesis in TgDyrk1A. Neurobiol Dis 2013; 60:18-31. [PMID: 23969234 DOI: 10.1016/j.nbd.2013.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/25/2013] [Accepted: 08/08/2013] [Indexed: 11/15/2022] Open
Abstract
Hippocampal adult neurogenesis disruptions have been suggested as one of the neuronal plasticity mechanisms underlying learning and memory impairment in Down syndrome (DS). However, it remains unknown whether specific candidate genes are implicated in these phenotypes in the multifactorial context of DS. Here we report that transgenic mice (TgDyrk1A) with overdosage of Dyrk1A, a DS candidate gene, show important alterations in adult neurogenesis including reduced cell proliferation rate, altered cell cycle progression and reduced cell cycle exit leading to premature migration, differentiation and reduced survival of newly born cells. In addition, less proportion of newborn hippocampal TgDyrk1A neurons are activated upon learning, suggesting reduced integration in learning circuits. Some of these alterations were DYRK1A kinase-dependent since we could rescue those using a DYRK1A inhibitor, epigallocatechin-3-gallate. Environmental enrichment also normalized DYRK1A kinase overdosage in the hippocampus, and rescued adult neurogenesis alterations in TgDyrk1A mice. We conclude that Dyrk1A is a good candidate to explain neuronal plasticity deficits in DS and that normalizing the excess of DYRK1A kinase activity either pharmacologically or using environmental stimulation can correct adult neurogenesis defects in DS.
Collapse
Affiliation(s)
- Meritxell Pons-Espinal
- Systems Biology Program, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, E-08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, E-08003 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Dr. Aiguader 88, E-08003 Barcelona, Spain
| | | | | |
Collapse
|