1
|
Cao B, Wang C, Zhou Z. Insights into the interactions between cellulose and biological molecules. Carbohydr Res 2023; 523:108738. [PMID: 36587542 DOI: 10.1016/j.carres.2022.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Understanding the interactions between carbohydrate polymer molecules and biomolecules is of primary significance for its application. In this paper, the interaction between cellulose and biomolecules was studied using density functional theory method, in which cellobiose, nucleobases, and aromatic amino acids were employed as the structural models of cellulose, DNA, and protein, respectively. Quantitative molecular surface electrostatic potential (ESP) results well represented how cellulose perceived by organism during the recognition. The structural and energetic studies of cellulose with biomolecules complexes show that weak interactions, such as hydrogen bonding interaction, vdW interaction, and pi-H interaction, play an important role in stabilizing these complexes. Through systematic wavefunction analysis, including reduced density gradient (RDG) and natural bond orbital (NBO) methods, the nature of these weak interactions was revealed and further graphically visualized. In-depth understanding of the interaction between cellobiose with biological model molecules may shed lights on the application of carbohydrate polymer-based materials in biological fields.
Collapse
Affiliation(s)
- Bobo Cao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Chao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Zhengyu Zhou
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China.
| |
Collapse
|
2
|
Elzes MR, Mertens I, Sedlacek O, Verbraeken B, Doensen ACA, Mees MA, Glassner M, Jana S, Paulusse JMJ, Hoogenboom R. Linear Poly(ethylenimine-propylenimine) Random Copolymers for Gene Delivery: From Polymer Synthesis to Efficient Transfection with High Serum Tolerance. Biomacromolecules 2022; 23:2459-2470. [PMID: 35499242 DOI: 10.1021/acs.biomac.2c00210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Naturally occurring oligoamines, such as spermine, spermidine, and putrescine, are well-known regulators of gene expression. These oligoamines frequently have short alkyl spacers with varying lengths between the amines. Linear polyethylenimine (PEI) is a polyamine that has been widely applied as a gene vector, with various formulations currently in clinical trials. In order to emulate natural oligoamine gene regulators, linear random copolymers containing both PEI and polypropylenimine (PPI) repeat units were designed as novel gene delivery agents. In general, statistical copolymerization of 2-oxazolines and 2-oxazines leads to the formation of gradient copolymers. In this study, however, we describe for the first time the synthesis of near-ideal random 2-oxazoline/2-oxazine copolymers through careful tuning of the monomer structures and reactivity as well as polymerization conditions. These copolymers were then transformed into near-random PEI-PPI copolymers by controlled side-chain hydrolysis. The prepared PEI-PPI copolymers formed stable polyplexes with GFP-encoding plasmid DNA, as validated by dynamic light scattering. Furthermore, the cytotoxicity and transfection efficiency of polyplexes were evaluated in C2C12 mouse myoblasts. While the polymer chain length did not significantly increase the toxicity, a higher PPI content was associated with increased toxicity and also lowered the amount of polymers needed to achieve efficient transfection. The transfection efficiency was significantly influenced by the degree of polymerization of PEI-PPI, whereby longer polymers resulted in more transfected cells. Copolymers with 60% or lower PPI content exhibited a good balance between high plasmid-DNA transfection efficiency and low toxicity. Interestingly, these novel PEI-PPI copolymers revealed exceptional serum tolerance, whereby transfection efficiencies of up to 53% of transfected cells were achieved even under 50% serum conditions. These copolymers, especially PEI-PPI with DP500 and a 1:1 PEI/PPI ratio, were identified as promising transfection agents for plasmid DNA.
Collapse
Affiliation(s)
- M Rachèl Elzes
- Department of Biomolecular Nanotechnology, MESA + Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Ine Mertens
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Ondrej Sedlacek
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Bart Verbraeken
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Aniek C A Doensen
- Department of Biomolecular Nanotechnology, MESA + Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands.,Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Maarten A Mees
- Department of Biomolecular Nanotechnology, MESA + Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Mathias Glassner
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Somdeb Jana
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Jos M J Paulusse
- Department of Biomolecular Nanotechnology, MESA + Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers (Basel) 2021; 13:polym13193307. [PMID: 34641123 PMCID: PMC8512075 DOI: 10.3390/polym13193307] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022] Open
Abstract
Vectors and carriers play an indispensable role in gene therapy and drug delivery. Non-viral vectors are widely developed and applied in clinical practice due to their low immunogenicity, good biocompatibility, easy synthesis and modification, and low cost of production. This review summarized a variety of non-viral vectors and carriers including polymers, liposomes, gold nanoparticles, mesoporous silica nanoparticles and carbon nanotubes from the aspects of physicochemical characteristics, synthesis methods, functional modifications, and research applications. Notably, non-viral vectors can enhance the absorption of cargos, prolong the circulation time, improve therapeutic effects, and provide targeted delivery. Additional studies focused on recent innovation of novel synthesis techniques for vector materials. We also elaborated on the problems and future research directions in the development of non-viral vectors, which provided a theoretical basis for their broad applications.
Collapse
|
4
|
Nayak S, Das P. Covalent Conjugation of Carbon Dots with Plasmid and DNA Condensation Thereafter: Realistic Insights into the Condensate Morphology, Energetics, and Photophysics. ACS OMEGA 2021; 6:21425-21435. [PMID: 34471745 PMCID: PMC8387987 DOI: 10.1021/acsomega.1c02247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The use of carbon quantum dots (CDs) as trackable nanocarriers for plasmid and gene as hybrid DNA condensates has gained momentum, as evident from the significant recent research efforts. However, the in-depth morphology of the condensates, the energetics of the condensation process, and the photophysical aspects of the CD are not well understood and often disregarded. Herein, for the first time, we covalently attached linearized pUC19 with citric acid and cysteamine-derived CD through the reaction of the surface amine groups of CDs with the 5'-phospho-methyl imidazolide derivative of the plasmid to obtain a 1:1 CD-pUC19 covalent conjugate. The CD-pUC19 conjugates were further transformed into DNA condensates with spermine that displayed a toroidal morphology with a diameter of ∼200 nm involving ∼2-5 CD-pUC19 conjugates in a single condensate. While the interaction of pristine CD to spermine was exothermic, the binding of the CD-pUC19 conjugate with spermine was endothermic and primarily entropy-driven. The condensed plasmid displayed severe conformational stress and deviation from the B-form due to the compact packing of the DNA but better transfection ability than the pristine CD. The CDs in the condensates tend to come close to each other at the core that results in their shielding from excitation. However, this does not prevent them from emanating reactive oxygen species on visible light exposure that compromises the decondensation process and cell viability at higher exposure times, calling for utmost caution in establishing them as nonviral transfecting agents universally.
Collapse
Affiliation(s)
- Suman Nayak
- Department of Chemistry, Indian
Institute of Technology Patna, Bihta, Patna, 801106 Bihar, India
| | - Prolay Das
- Department of Chemistry, Indian
Institute of Technology Patna, Bihta, Patna, 801106 Bihar, India
| |
Collapse
|
5
|
Ayogu JI, Onoabedje EA. Prospects and Applications of Palladium Nanoparticles in the Cross-coupling of (hetero)aryl Halides and Related Analogues. ChemistryOpen 2021; 10:430-450. [PMID: 33590728 PMCID: PMC8015734 DOI: 10.1002/open.202000309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Discovering efficient methods for the formation of carbon-carbon bonds is a central ongoing theme in organic synthesis. Cross-coupling reactions catalysed by metal nanoparticles are attractive alternatives to the traditional use of metal counterparts due to the catalytic tunability, selectivity, recyclability and reusability of the nanoparticles. The ongoing search for sustainable processes demands that reusable and environmentally benign catalysts are used. While the advantages of nanoparticles catalysts over bulk catalysts cannot be overemphasised, the problem of sintering, agglomeration and leaching are drawbacks to their full industrial applications. Hence, efforts are being made towards advancing the efficiency of the catalytic nanoparticle systems over the years. This review presents the progress, the challenges and the prospects of palladium nanoparticle with focus on Heck, Suzuki, Hiyama and Sonogashira cross-coupling reactions involving (hetero) aryl halides and the analogues.
Collapse
Affiliation(s)
- Jude I. Ayogu
- Department of Chemistry, School of Physical and Chemical ScienceUniversity of CanterburyChristchurch8040New Zealand
- Department of Pure and Industrial ChemistryUniversity of NigeriaNsukka410001Nigeria
| | - Efeturi A. Onoabedje
- Department of Pure and Industrial ChemistryUniversity of NigeriaNsukka410001Nigeria
| |
Collapse
|
6
|
Ponti F, Campolungo M, Melchiori C, Bono N, Candiani G. Cationic lipids for gene delivery: many players, one goal. Chem Phys Lipids 2021; 235:105032. [PMID: 33359210 DOI: 10.1016/j.chemphyslip.2020.105032] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Lipid-based carriers represent the most widely used alternative to viral vectors for gene expression and gene silencing purposes. This class of non-viral vectors is particularly attractive for their ease of synthesis and chemical modifications to endow them with desirable properties. Despite combinatorial approaches have led to the generation of a large number of cationic lipids displaying different supramolecular structures and improved behavior, additional effort is needed towards the development of more and more effective cationic lipids for transfection purposes. With this review, we seek to highlight the great progress made in the design of each and every constituent domain of cationic lipids, that is, the chemical structure of the headgroup, linker and hydrophobic moieties, and on the specific effect on the assembly with nucleic acids. Since the complexity of such systems is known to affect their performances, the role of formulation, stability and phase behavior on the transfection efficiency of such assemblies will be thoroughly discussed. Our objective is to provide a conceptual framework for the development of ever more performing lipid gene delivery vectors.
Collapse
Affiliation(s)
- Federica Ponti
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy; Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Dept. Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC, Canada
| | - Matilde Campolungo
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy
| | - Clara Melchiori
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy
| | - Nina Bono
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy.
| | - Gabriele Candiani
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy.
| |
Collapse
|
7
|
Qu G, Xia T, Zhou W, Zhang X, Zhang H, Hu L, Shi J, Yu XF, Jiang G. Property-Activity Relationship of Black Phosphorus at the Nano-Bio Interface: From Molecules to Organisms. Chem Rev 2020; 120:2288-2346. [PMID: 31971371 DOI: 10.1021/acs.chemrev.9b00445] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a novel member of the two-dimensional nanomaterial family, mono- or few-layer black phosphorus (BP) with direct bandgap and high charge carrier mobility is promising in many applications such as microelectronic devices, photoelectronic devices, energy technologies, and catalysis agents. Due to its benign elemental composition (phosphorus), large surface area, electronic/photonic performances, and chemical/biological activities, BP has also demonstrated a great potential in biomedical applications including biosensing, photothermal/photodynamic therapies, controlled drug releases, and antibacterial uses. The nature of the BP-bio interface is comprised of dynamic contacts between nanomaterials (NMs) and biological systems, where BP and the biological system interact. The physicochemical interactions at the nano-bio interface play a critical role in the biological effects of NMs. In this review, we discuss the interface in the context of BP as a nanomaterial and its unique physicochemical properties that may affect its biological effects. Herein, we comprehensively reviewed the recent studies on the interactions between BP and biomolecules, cells, and animals and summarized various cellular responses, inflammatory/immunological effects, as well as other biological outcomes of BP depending on its own physical properties, exposure routes, and biodistribution. In addition, we also discussed the environmental behaviors and potential risks on environmental organisms of BP. Based on accumulating knowledge on the BP-bio interfaces, this review also summarizes various safer-by-design strategies to change the physicochemical properties including chemical stability and nano-bio interactions, which are critical in tuning the biological behaviors of BP. The better understanding of the biological activity of BP at BP-bio interfaces and corresponding methods to overcome the challenges would promote its future exploration in terms of bringing this new nanomaterial to practical applications.
Collapse
Affiliation(s)
- Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences 100085 , Beijing , P.R. China.,Institute of Environment and Health , Jianghan University , Wuhan 430056 , China.,Institute of Environment and Health , Hangzhou Institute for Advanced Study, UCAS , Hangzhou 310000 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tian Xia
- Division of Nanomedicine, Department of Medicine , University of California Los Angeles California 90095 , United States
| | - Wenhua Zhou
- Materials Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P.R. China
| | - Xue Zhang
- Materials Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P.R. China
| | - Haiyan Zhang
- College of Environment , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences 100085 , Beijing , P.R. China.,Institute of Environment and Health , Jianghan University , Wuhan 430056 , China.,Institute of Environment and Health , Hangzhou Institute for Advanced Study, UCAS , Hangzhou 310000 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences 100085 , Beijing , P.R. China.,Institute of Environment and Health , Jianghan University , Wuhan 430056 , China.,Institute of Environment and Health , Hangzhou Institute for Advanced Study, UCAS , Hangzhou 310000 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xue-Feng Yu
- Materials Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P.R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences 100085 , Beijing , P.R. China.,Institute of Environment and Health , Jianghan University , Wuhan 430056 , China.,Institute of Environment and Health , Hangzhou Institute for Advanced Study, UCAS , Hangzhou 310000 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
8
|
Hao B, Wang K, Zhou Y, Sui C, Wang L, Bai R, Yang Z. Label-Free Detecting of the Compaction and Decompaction of ctDNA Molecules Induced by Surfactants with SERS Based on a nanoPAA-ZnCl 2-AuLs Solid Substrate. ACS OMEGA 2020; 5:1109-1119. [PMID: 31984267 PMCID: PMC6977030 DOI: 10.1021/acsomega.9b03294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/24/2019] [Indexed: 06/02/2023]
Abstract
DNA molecular compaction/decompaction is of great significance for the exploration of basic life processes, the research of biomedical and genetic engineering, and so forth. However, the detailed mechanism of DNA compaction/decompaction caused by surfactants remains an open and challenging problem that has not been fully solved so far. In this paper, a sort of novel solid substrate, nanoPAA-ZnCl2-AuLs, with good stability and high sensitivity, was prepared by a self-assembly method. Based on this substrate, the surface-enhanced Raman scattering (SERS) technology was employed to investigate characteristics of interactions between DNA molecules and surfactants at a single molecular level. SERS spectra of calf thymus DNA (ctDNA), cetyl trimethyl ammonium bromide (CTAB), and sodium dodecyl sulfate (SDS) with a concentration as low as 10-9 M, and SERS spectra of ctDNA-CTAB and ctDNA-CTAB-SDS composites were collected, respectively. The interactions between ctDNA and surfactants were analyzed by changes in SERS spectra, for example, disappearances and appearances of SERS bands and relative changes of peak intensity, in which CTAB resulted in the compaction of the DNA molecule while SDS induced the decompaction of the ctDNA-CTAB complex. Moreover, UV-visible spectrophotometry was employed to demonstrate the compaction/decompaction of ctDNA molecules caused by surfactants. The local binding modes of ctDNA molecules and surfactant molecules were expounded. This work will be helpful for understanding biological processes such as DNA compaction and recombination within nucleus or/and cells and for the development of gene therapy technologies.
Collapse
Affiliation(s)
- Bojuan Hao
- State
Key Laboratory of Cultivation Base for Photoelectric Technology and
Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi
Province, National Center for International Research of Photoelectric
Technology & Nano-Functional Materials and Application, Institute
of Photonics and Photon-Technology, Northwest
University, Xi’an 710069, China
| | - Kaige Wang
- State
Key Laboratory of Cultivation Base for Photoelectric Technology and
Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi
Province, National Center for International Research of Photoelectric
Technology & Nano-Functional Materials and Application, Institute
of Photonics and Photon-Technology, Northwest
University, Xi’an 710069, China
| | - Yukun Zhou
- State
Key Laboratory of Cultivation Base for Photoelectric Technology and
Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi
Province, National Center for International Research of Photoelectric
Technology & Nano-Functional Materials and Application, Institute
of Photonics and Photon-Technology, Northwest
University, Xi’an 710069, China
| | - Chaofan Sui
- State
Key Laboratory of Cultivation Base for Photoelectric Technology and
Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi
Province, National Center for International Research of Photoelectric
Technology & Nano-Functional Materials and Application, Institute
of Photonics and Photon-Technology, Northwest
University, Xi’an 710069, China
| | - Lei Wang
- Xi’an
Institute of Applied Optics, Xi’an 710065, China
| | - Ren Bai
- Medical
College, Xi’an International University, Xi’an 710077, China
| | - Zhaojin Yang
- Xi’an
Institute of Applied Optics, Xi’an 710065, China
| |
Collapse
|
9
|
Thomas TJ, Tajmir-Riahi HA, Pillai CKS. Biodegradable Polymers for Gene Delivery. Molecules 2019; 24:molecules24203744. [PMID: 31627389 PMCID: PMC6832905 DOI: 10.3390/molecules24203744] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
The cellular transport process of DNA is hampered by cell membrane barriers, and hence, a delivery vehicle is essential for realizing the potential benefits of gene therapy to combat a variety of genetic diseases. Virus-based vehicles are effective, although immunogenicity, toxicity and cancer formation are among the major limitations of this approach. Cationic polymers, such as polyethyleneimine are capable of condensing DNA to nanoparticles and facilitate gene delivery. Lack of biodegradation of polymeric gene delivery vehicles poses significant toxicity because of the accumulation of polymers in the tissue. Many attempts have been made to develop biodegradable polymers for gene delivery by modifying existing polymers and/or using natural biodegradable polymers. This review summarizes mechanistic aspects of gene delivery and the development of biodegradable polymers for gene delivery.
Collapse
Affiliation(s)
- T J Thomas
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, KTL N102, 675 Hoes Lane, Piscataway, NJ 08854, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA.
| | | | - C K S Pillai
- Department of Chemistry-Biochemistry-Physics, University of Québec in Trois-Rivières, C. P. 500, Trois-Rivières, QC G9A 5H7, Canada.
| |
Collapse
|
10
|
Gasperoni F, Turini P, Agostinelli E. A novel comprehensive paradigm for the etiopathogenesis of multiple sclerosis: therapeutic approaches and future perspectives on its treatment. Amino Acids 2019; 51:745-759. [PMID: 30887124 DOI: 10.1007/s00726-019-02718-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/01/2019] [Indexed: 12/19/2022]
Abstract
It is well recognized that variation in the geographical distribution of prevalence of multiple sclerosis (MS) exists: increasing the latitude its prevalence increases as well, but the underlying causes of such dissimilarity still remained elusive as of today. Currently, the most accredited hypothesis is that the closer to the equator the more pronounced is the amount of sunlight which, in turn, increases the production of vitamin D. Cholecalciferol is indeed deficient in MS patients, but this factor does not explain by itself the etiopathogenesis of the disease. In the present study, to search for a pattern and provide a model of the disease's etiology consistent with this regional factor, as well with its changing ethnic, sex-ratio, lifestyle variations and the other unexplained aspects of MS, an extensive analysis of peer-reviewed literature and data was conducted. The arisen hypothesis was that, increasing the latitude, the factor that varies and can have the stronger effect on the human organism, is the continuous and ever-increasing diversity of the natural light-dark cycle. The consequent effort of the suprachiasmatic nucleus to entrain the organism's circadian rhythm affects the hypothalamic-pituitary-adrenal axis resulting in desynchronizing the central and peripheral circadian clocks and pathologizing the immunitary system. To verify such hypothesis, a theoretical framework of the etiopathogenesis, coherent with the gathered literature, was conceived and a demonstration to corroborate it was eventually devised and performed. The results underscored that people living in countries subjected to a further circadian disruptive factor, as daylight saving time, have a 6.35 times higher prevalence of MS than States placed on their same latitude that do not observe it, thus strongly supporting the hypothesis. As further reinforcement of the conclusions, it is worth mentioning that the levels of polyamines rise abruptly in autoimmune diseases. Moreover, among their numerous roles, these polycations participate to the regulation of the circadian clock so their sudden variation might disrupt it. Following these interesting findings, new perspectives in therapies are, therefore, proposed.
Collapse
Affiliation(s)
- Francesco Gasperoni
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy.,International Polyamines Foundation-ONLUS, Via del Forte Tiburtino 98, 00159, Rome, Italy
| | - Paola Turini
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy.,International Polyamines Foundation-ONLUS, Via del Forte Tiburtino 98, 00159, Rome, Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy. .,International Polyamines Foundation-ONLUS, Via del Forte Tiburtino 98, 00159, Rome, Italy.
| |
Collapse
|
11
|
Cellular and Animal Model Studies on the Growth Inhibitory Effects of Polyamine Analogues on Breast Cancer. Med Sci (Basel) 2018. [PMID: 29533973 PMCID: PMC5872181 DOI: 10.3390/medsci6010024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyamine levels are elevated in breast tumors compared to those of adjacent normal tissues. The female sex hormone, estrogen is implicated in the origin and progression of breast cancer. Estrogens stimulate and antiestrogens suppress the expression of polyamine biosynthetic enzyme, ornithine decarboxylate (ODC). Using several bis(ethyl)spermine analogues, we found that these analogues inhibited the proliferation of estrogen receptor-positive and estrogen receptor negative breast cancer cells in culture. There was structure-activity relationship in the efficacy of these compounds in suppressing cell growth. The activity of ODC was inhibited by these compounds, whereas the activity of the catabolizing enzyme, spermidine/spermine N¹-acetyl transferase (SSAT) was increased by 6-fold by bis(ethyl)norspermine in MCF-7 cells. In a transgenic mouse model of breast cancer, bis(ethyl)norspermine reduced the formation and growth of spontaneous mammary tumor. Recent studies indicate that induction of polyamine catabolic enzymes SSAT and spermine oxidase (SMO) play key roles in the anti-proliferative and apoptotic effects of polyamine analogues and their combinations with chemotherapeutic agents such as 5-fluorouracil (5-FU) and paclitaxel. Thus, polyamine catabolic enzymes might be important therapeutic targets and markers of sensitivity in utilizing polyamine analogues in combination with other therapeutic agents.
Collapse
|
12
|
Collapse of DNA in packaging and cellular transport. Int J Biol Macromol 2017; 109:36-48. [PMID: 29247730 DOI: 10.1016/j.ijbiomac.2017.12.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/02/2023]
Abstract
The dawn of molecular biology and recombinant DNA technology arose from our ability to manipulate DNA, including the process of collapse of long extended DNA molecules into nanoparticles of approximately 100 nm diameter. This condensation process is important for the packaging of DNA in the cell and for transporting DNA through the cell membrane for gene therapy. Multivalent cations, such as natural polyamines (spermidine and spermine), were initially recognized for their ability to provoke DNA condensation. Current research is targeted on molecules such as linear and branched polymers, oligopeptides, polypeptides and dendrimers that promote collapse of DNA to nanometric particles for gene therapy and on the energetics of DNA packaging.
Collapse
|
13
|
Puchkov PA, Kartashova IA, Shmendel EV, Luneva AS, Morozova NG, Zenkova MA, Maslov MA. Spacer structure and hydrophobicity influences transfection activity of novel polycationic gemini amphiphiles. Bioorg Med Chem Lett 2017. [DOI: 10.1016/j.bmcl.2017.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Ge D, Higashi K, Ito D, Nagano K, Ishikawa R, Terui Y, Higashi K, Moribe K, Linhardt RJ, Toida T. Poly-ion Complex of Chondroitin Sulfate and Spermine and Its Effect on Oral Chondroitin Sulfate Bioavailability. Chem Pharm Bull (Tokyo) 2017; 64:390-8. [PMID: 27150471 DOI: 10.1248/cpb.c15-00940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chondroitin sulfate (CS) has been accepted as an ingredient in health foods for the treatment of symptoms related to arthritis and cartilage repair. However, CS is poorly absorbed through the gastrointestinal tract because of its high negative electric charges and molecular weight (MW). In this study, poly-ion complex (PIC) formation was found in aqueous solutions through electrostatic interaction between CS and polyamines-organic molecules having two or more primary amino groups ubiquitously distributed in natural products at high concentrations. Characteristic properties of various PICs generated by mixing CS and natural polyamines, including unusual polyamines, were studied based on the turbidity for PIC formation, the dynamic light scattering for the size of PIC particles, and ζ-potential measurements for the surface charges of PIC particles. The efficiency of PIC formation between CS and spermine increased in a CS MW-dependent manner, with 15 kDa CS being critical for the formation of PIC (particle size: 3.41 µm) having nearly neutral surface charge (ζ-potential: -0.80 mV). Comparatively, mixing tetrakis(3-aminopropyl)ammonium and 15 kDa of CS afforded significant levels of PIC (particle size: 0.42±0.16 µm) despite a strongly negative surface charge (-34.67±1.15 mV). Interestingly, the oral absorption efficiency of CS was greatly improved only when PIC possessing neutral surface charges was administered to mice. High formation efficiency and electrically neutral surface charge of PIC particles are important factors for oral CS bioavailability.
Collapse
Affiliation(s)
- Dan Ge
- Graduate School of Pharmaceutical Sciences, Chiba University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Camacho AS, Martín-García I, Contreras-Celedón C, Chacón-García L, Alonso F. DNA-supported palladium nanoparticles as a reusable catalyst for the copper- and ligand-free Sonogashira reaction. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00001d] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Palladium nanoparticles on DNA have been shown to be an effective and reusable heterogeneous catalyst for the copper- and ligand-free Sonogashira coupling reaction of aryl iodides under mild conditions in air.
Collapse
Affiliation(s)
- Ana Silvia Camacho
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Alicante
- 03080 Alicante
- Spain
| | - Iris Martín-García
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Alicante
- 03080 Alicante
- Spain
| | - Claudia Contreras-Celedón
- Laboratorio de Diseño Molecular
- Instituto de Investigaciones Químico-Biológicas
- Universidad Michoacana de San Nicolás de Hidalgo
- Morelia
- México
| | - Luis Chacón-García
- Laboratorio de Diseño Molecular
- Instituto de Investigaciones Químico-Biológicas
- Universidad Michoacana de San Nicolás de Hidalgo
- Morelia
- México
| | - Francisco Alonso
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Alicante
- 03080 Alicante
- Spain
| |
Collapse
|
16
|
|
17
|
Szumilak M, Merecz A, Strek M, Stanczak A, Inglot TW, Karwowski BT. DNA Interaction Studies of Selected Polyamine Conjugates. Int J Mol Sci 2016; 17:E1560. [PMID: 27657041 PMCID: PMC5037830 DOI: 10.3390/ijms17091560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 01/26/2023] Open
Abstract
The interaction of polyamine conjugates with DNA double helix has been studied. Binding properties were examined by ethidium bromide (EtBr) displacement and DNA unwinding/topoisomerase I/II (Topo I/II) activity assays, as well as dsDNA thermal stability studies and circular dichroism spectroscopy. Genotoxicity of the compounds was estimated by a comet assay. It has been shown that only compound 2a can interact with dsDNA via an intercalative binding mode as it displaced EtBr from the dsDNA-dye complex, with Kapp = 4.26 × 10⁶ M-1; caused an increase in melting temperature; changed the circular dichroism spectrum of dsDNA; converted relaxed plasmid DNA into a supercoiled molecule in the presence of Topo I and reduced the amount of short oligonucleotide fragments in the comet tail. Furthermore, preliminary theoretical study has shown that interaction of the discussed compounds with dsDNA depends on molecule linker length and charge distribution over terminal aromatic chromophores.
Collapse
Affiliation(s)
- Marta Szumilak
- Department of Hospital Pharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland.
| | - Anna Merecz
- Food Science Department, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland.
| | - Malgorzata Strek
- Department of Nucleic Acids Biochemistry, Medical University of Lodz, 251 Pomorska Street, 92-213 Lodz, Poland.
| | - Andrzej Stanczak
- Department of Hospital Pharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland.
| | - Tadeusz W Inglot
- Department of Medicinal Chemistry, Medical University of Lublin, 4 Jaczewskiego Street, 20-090 Lublin, Poland.
| | - Boleslaw T Karwowski
- Food Science Department, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland.
| |
Collapse
|
18
|
Tamoxifen metabolite endoxifen interferes with the polyamine pathway in breast cancer. Amino Acids 2016; 48:2293-302. [PMID: 27438264 DOI: 10.1007/s00726-016-2300-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/11/2016] [Indexed: 12/27/2022]
Abstract
Tamoxifen is the most widely used drug to treat women with estrogen receptor α (ERα)-positive breast cancer. Endoxifen is recognized as the active metabolite of tamoxifen in humans. We studied endoxifen effects on ERα-positive MCF-7 breast cancer cells. Estradiol increased the proliferation of MCF-7 cells by two- to threefold and endoxifen suppressed its effects. Endoxifen suppressed c-myc, c-fos and Tff1 oncogene expression, as revealed by RT-PCR. Estradiol increased the activity of ornithine decarboxylase (ODC) and adenosyl methioninedecarboxylase (AdoMetDC), whereas endoxifen suppressed these enzyme activities. Endoxifen increased activities of spermine oxidase (SMO) and acetyl polyamine oxidase (APAO) significantly, and reduced the levels of putrescine and spermidine. These data suggest a possible mechanism for the antiestrogenic effects of tamoxifen/endoxifen, involving the stimulation of polyamine oxidase enzymes. Therefore, SMO and APAO stimulation might be useful biomarkers for the efficacy of endoxifen treatment of breast cancer.
Collapse
|
19
|
Chanphai P, Thomas TJ, Tajmir-Riahi HA. Conjugation of biogenic and synthetic polyamines with serum proteins: A comprehensive review. Int J Biol Macromol 2016; 92:515-522. [PMID: 27431795 DOI: 10.1016/j.ijbiomac.2016.07.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
We have reviewed the conjugation of biogenic polyamines spermine (spm), spermidine (spmd) and synthetic polyamines 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. The results of multiple spectroscopic methods and molecular modeling were analysed here and correlations between polyamine binding mode and protein structural changes were estabilished. Polyamine-protein bindings are mainly via hydrophilic and H-bonding contacts. BSA forms more stable conjugates than HSA and b-LG. Biogenic polyamines form more stable complexes than synthetic polyamines except in the case of b-LG, where the protein shows more hydrophobic character than HSA and BSA. The loading efficacies were 40-52%. Modeling showed the presence of several H-bonding systems, which stabilized polyamine-protein conjugates. Polyamine conjugation induced major alterations of serum protein conformations. The potential application of serum proteins in delivery of polyamines is evaluated here.
Collapse
Affiliation(s)
- P Chanphai
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, Québec G9A 5H7,Canada
| | - T J Thomas
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - H A Tajmir-Riahi
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, Québec G9A 5H7,Canada.
| |
Collapse
|
20
|
Thomas TJ, Tajmir-Riahi HA, Thomas T. Polyamine–DNA interactions and development of gene delivery vehicles. Amino Acids 2016; 48:2423-31. [DOI: 10.1007/s00726-016-2246-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022]
|
21
|
Venkiteswaran S, Thomas T, Thomas TJ. Selectivity of polyethyleneimines on DNA nanoparticle preparation and gene transport. ChemistrySelect 2016. [DOI: 10.1002/slct.201600026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sripriya Venkiteswaran
- Department of Medicine and Cancer Institute of New Jersey; Rutgers Robert Wood Johnson Medical School; 125 Paterson Street New Brunswick NJ 08901 USA
| | - Thresia Thomas
- Department of Environmental and Community Medicine; Rutgers Robert Wood Johnson Medical School; 170 Frelinghusen Road Piscataway NJ 08854 USA
| | - Thekkumkattil J. Thomas
- Department of Medicine and Cancer Institute of New Jersey; Rutgers Robert Wood Johnson Medical School; 125 Paterson Street New Brunswick NJ 08901 USA
| |
Collapse
|
22
|
Bonaiuto E, Magro M, Baratella D, Jakubec P, Sconcerle E, Terzo M, Miotto G, Macone A, Agostinelli E, Fasolato S, Venerando R, Salviulo G, Malina O, Zboril R, Vianello F. Ternary Hybrid γ-Fe2O3/CrVI/Amine Oxidase Nanostructure for Electrochemical Sensing: Application for Polyamine Detection in Tumor Tissue. Chemistry 2016; 22:6846-52. [DOI: 10.1002/chem.201600156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Emanuela Bonaiuto
- Department of Comparative Biomedicine and Food Science; University of Padua; Agripolis-Viale dell'Università 16 Legnaro 35020 (PD) Italy
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science; University of Padua; Agripolis-Viale dell'Università 16 Legnaro 35020 (PD) Italy
- Regional Centre of Advanced Technologies and Materials; Palacky University; Olomouc Czech Republic
| | - Davide Baratella
- Department of Comparative Biomedicine and Food Science; University of Padua; Agripolis-Viale dell'Università 16 Legnaro 35020 (PD) Italy
| | - Petr Jakubec
- Regional Centre of Advanced Technologies and Materials; Palacky University; Olomouc Czech Republic
| | - Elisabetta Sconcerle
- Department of Comparative Biomedicine and Food Science; University of Padua; Agripolis-Viale dell'Università 16 Legnaro 35020 (PD) Italy
| | - Milo Terzo
- Department of Comparative Biomedicine and Food Science; University of Padua; Agripolis-Viale dell'Università 16 Legnaro 35020 (PD) Italy
| | - Giovanni Miotto
- Department of Molecular Medicine; University of Padua; Italy
- Proteomic Center of Padova University; VIMM and Padova University Hospital; Padua Italy
| | - Alberto Macone
- Department of Biochemical Sciences “A. Rossi Fanelli”; University of Rome “La Sapienza”; Rome Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences “A. Rossi Fanelli”; University of Rome “La Sapienza”; Rome Italy
- CNR, Institute of Molecular Biology and Pathology; Rome Italy
| | - Silvano Fasolato
- Unit of Hepatic Emergencies and Liver Transplantation; Department of Medicine; University of Padua; Padua Italy
| | - Rina Venerando
- Department of Molecular Medicine; University of Padua; Italy
| | | | - Ondrej Malina
- Regional Centre of Advanced Technologies and Materials; Palacky University; Olomouc Czech Republic
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials; Palacky University; Olomouc Czech Republic
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science; University of Padua; Agripolis-Viale dell'Università 16 Legnaro 35020 (PD) Italy
- Regional Centre of Advanced Technologies and Materials; Palacky University; Olomouc Czech Republic
| |
Collapse
|
23
|
Zhang XJ, Zhang YM, Wang Z, Chen Y, Liu Y. Cooperative DNA Compaction by Ternary Supramolecular Complex with Cucurbituril/Cyclodextrin Pair. ChemistrySelect 2016. [DOI: 10.1002/slct.201600066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xu-Jie Zhang
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Ying-Ming Zhang
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Ze Wang
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Yong Chen
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 P. R. China
| | - Yu Liu
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 P. R. China
| |
Collapse
|
24
|
Hoppstädter J, Seif M, Dembek A, Cavelius C, Huwer H, Kraegeloh A, Kiemer AK. M2 polarization enhances silica nanoparticle uptake by macrophages. Front Pharmacol 2015; 6:55. [PMID: 25852557 PMCID: PMC4369656 DOI: 10.3389/fphar.2015.00055] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/04/2015] [Indexed: 12/23/2022] Open
Abstract
While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth. We employed different models of M1 and M2 polarization: granulocyte-macrophage colony-stimulating factor/lipopolysaccharide (LPS)/interferon (IFN)-γ was used to generate primary human M1 cells and macrophage colony-stimulating factor (M-CSF)/interleukin (IL)-10 to differentiate M2 monocyte-derived macrophages (MDM). PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-γ and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø26 and 41 nm) and microparticles (Ø1.75 μm) was quantified. At the concentration used (50 μg/ml), silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human MDM compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue. In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but might also open up therapeutic perspectives allowing to specifically target M2 polarized macrophages.
Collapse
Affiliation(s)
- Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken Germany
| | - Michelle Seif
- Korea Institute of Science and Technology Europe, Saarbruecken Germany
| | - Anna Dembek
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken Germany
| | - Christian Cavelius
- Nano Cell Interactions Group, INM - Leibniz Institute for New Materials, Saarbruecken Germany
| | - Hanno Huwer
- Department of Cardiothoracic Surgery, Voelklingen Heart Centre, Voelklingen Germany
| | - Annette Kraegeloh
- Nano Cell Interactions Group, INM - Leibniz Institute for New Materials, Saarbruecken Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken Germany
| |
Collapse
|
25
|
Agostinelli E, Vianello F, Magliulo G, Thomas T, Thomas TJ. Nanoparticle strategies for cancer therapeutics: Nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles (Review). Int J Oncol 2015; 46:5-16. [PMID: 25333509 DOI: 10.3892/ijo.2014.2706] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/01/2014] [Indexed: 11/06/2022] Open
Abstract
Nanotechnology for cancer gene therapy is an emerging field. Nucleic acids, polyamine analogues and cytotoxic products of polyamine oxidation, generated in situ by an enzyme-catalyzed reaction, can be developed for nanotechnology-based cancer therapeutics with reduced systemic toxicity and improved therapeutic efficacy. Nucleic acid-based gene therapy approaches depend on the compaction of DNA/RNA to nanoparticles and polyamine analogues are excellent agents for the condensation of nucleic acids to nanoparticles. Polyamines and amine oxidases are found in higher levels in tumours compared to that of normal tissues. Therefore, the metabolism of polyamines spermidine and spermine, and their diamine precursor, putrescine, can be targets for antineoplastic therapy since these naturally occurring alkylamines are essential for normal mammalian cell growth. Intracellular polyamine concentrations are maintained at a cell type-specific set point through the coordinated and highly regulated interplay between biosynthesis, transport, and catabolism. In particular, polyamine catabolism involves copper-containing amine oxidases. Several studies showed an important role of these enzymes in developmental and disease-related processes in animals through the control of polyamine homeostasis in response to normal cellular signals, drug treatment, and environmental and/or cellular stress. The production of toxic aldehydes and reactive oxygen species (ROS), H2O2 in particular, by these oxidases suggests a mechanism by which amine oxidases can be exploited as antineoplastic drug targets. The combination of bovine serum amine oxidase (BSAO) and polyamines prevents tumour growth, particularly well if the enzyme has been conjugated with a biocompatible hydrogel polymer. The findings described herein suggest that enzymatically formed cytotoxic agents activate stress signal transduction pathways, leading to apoptotic cell death. Consequently, superparamagnetic nanoparticles or other advanced nanosystem based on directed nucleic acid assemblies, polyamine-induced DNA condensation, and bovine serum amine oxidase may be proposed for futuristic anticancer therapy utilizing nucleic acids, polyamines and BSAO. BSAO based nanoparticles can be employed for the generation of cytotoxic polyamine metabolites.
Collapse
Affiliation(s)
- Enzo Agostinelli
- Istituto Pasteur-Fondazione Cenci Bolognetti Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome and CNR, Institute of Biology and Molecular Pathology, 00185 Rome, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy and Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, Olomouc 77146, Czech Republic
| | - Giuseppe Magliulo
- Department Organi di Senso, Sapienza University of Rome, 00185 Rome, Italy
| | - Thresia Thomas
- Formerly Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - T J Thomas
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|