1
|
Shi Y, Zeng Y, Zuo R, Wu S, Zhang L, Zhang Y, Wang T. Antimicrobial peptide Mt 5 inhibits human hepatocellular carcinoma cell HepG2 proliferation. Biochem Biophys Res Commun 2025; 742:151126. [PMID: 39647456 DOI: 10.1016/j.bbrc.2024.151126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
The Mt 5 peptide is an antimicrobial peptide, its effect on hepatocellular carcinoma (HCC) and its underlying mechanism is not understood. Therefore, this study aimed to investigate the effects of the Mt 5 peptide in a human HCC cell line, namely HepG2, in vitro. Notably, Mt 5 markedly reduced the growth of HepG2 cells by disrupting the cell membrane while exhibiting minimal toxicity to healthy liver cells. Furthermore, Mt 5 treatment increased intracellular reactive oxygen species levels and decreased the mitochondria membrane potential, suggesting the induction of mitochondrial damage-mediated apoptosis. Additionally, Mt 5-mediated cytoskeleton disruption suggested the potential inhibition of cell metastasis. Altogether, the findings of this study indicate the potential of the Mt 5 peptide as a drug candidate against HCC.
Collapse
Affiliation(s)
- Yanping Shi
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Microbiology, China; Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, China.
| | - Ye Zeng
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Microbiology, China; Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, China
| | - Ruifeng Zuo
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Microbiology, China
| | - Shenghua Wu
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Microbiology, China; Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, China
| | - Lihua Zhang
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Microbiology, China
| | - Yingchun Zhang
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Biology, China
| | - Tao Wang
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Microbiology, China; Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, China.
| |
Collapse
|
2
|
Liu Q, Wang L, He D, Wu Y, Liu X, Yang Y, Chen Z, Dong Z, Luo Y, Song Y. Application Value of Antimicrobial Peptides in Gastrointestinal Tumors. Int J Mol Sci 2023; 24:16718. [PMID: 38069041 PMCID: PMC10706433 DOI: 10.3390/ijms242316718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal cancer is a common clinical malignant tumor disease that seriously endangers human health and lacks effective treatment methods. As part of the innate immune defense of many organisms, antimicrobial peptides not only have broad-spectrum antibacterial activity but also can specifically kill tumor cells. The positive charge of antimicrobial peptides under neutral conditions determines their high selectivity to tumor cells. In addition, antimicrobial peptides also have unique anticancer mechanisms, such as inducing apoptosis, autophagy, cell cycle arrest, membrane destruction, and inhibition of metastasis, which highlights the low drug resistance and high specificity of antimicrobial peptides. In this review, we summarize the related studies on antimicrobial peptides in the treatment of digestive tract tumors, mainly oral cancer, esophageal cancer, gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer. This paper describes the therapeutic advantages of antimicrobial peptides due to their unique anticancer mechanisms. The length, net charge, and secondary structure of antimicrobial peptides can be modified by design or modification to further enhance their anticancer effects. In summary, as an emerging cancer treatment drug, antimicrobial peptides need to be further studied to realize their application in gastrointestinal cancer diseases.
Collapse
Affiliation(s)
- Qi Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Wang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dongxia He
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuewei Wu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xian Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yahan Yang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhizhi Chen
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhan Dong
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Luo
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuzhu Song
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Medical College, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
3
|
Wang J, Dou X, Song J, Lyu Y, Zhu X, Xu L, Li W, Shan A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med Res Rev 2018; 39:831-859. [PMID: 30353555 DOI: 10.1002/med.21542] [Citation(s) in RCA: 345] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022]
Abstract
Antimicrobial peptides (AMPs), critical components of the innate immune system, are widely distributed throughout the animal and plant kingdoms. They can protect against a broad array of infection-causing agents, such as bacteria, fungi, parasites, viruses, and tumor cells, and also exhibit immunomodulatory activity. AMPs exert antimicrobial activities primarily through mechanisms involving membrane disruption, so they have a lower likelihood of inducing drug resistance. Extensive studies on the structure-activity relationship have revealed that net charge, hydrophobicity, and amphipathicity are the most important physicochemical and structural determinants endowing AMPs with antimicrobial potency and cell selectivity. This review summarizes the recent advances in AMPs development with respect to characteristics, structure-activity relationships, functions, antimicrobial mechanisms, expression regulation, and applications in food, medicine, and animals.
Collapse
Affiliation(s)
- Jiajun Wang
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xiujing Dou
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jing Song
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yinfeng Lyu
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xin Zhu
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Lin Xu
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Weizhong Li
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
A potential food biopreservative, CecXJ-37N, non-covalently intercalates into the nucleotides of bacterial genomic DNA beyond membrane attack. Food Chem 2016; 217:576-584. [PMID: 27664674 DOI: 10.1016/j.foodchem.2016.09.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/03/2016] [Accepted: 09/05/2016] [Indexed: 01/10/2023]
Abstract
The antibacterial activities and mechanism of an amide-modified peptide CecXJ-37N were investigated in this study. CecXJ-37N showed small MICs (0.25-7.8μM) against eight harmful strains common in food industry. The α-helix proportion of CecXJ-37N increased by 11-fold in prokaryotic membrane comparable environments; cytotoxicity studies demonstrated the MHC was significantly higher than that of non-amidated isoform. Moreover, CecXJ-37N possessed stronger capacities to resist trypsin and pepsin hydrolysis within two hours. Flow cytometry and scanning electron microscopy demonstrated that CecXJ-37N induced pore-formation, morphological changes, and lysed E. coli cells. Fluorescence microscopy indicated that CecXJ-37N penetrated E. coli membrane and accumulated in cytoplasm. Further ultraviolet-visible spectroscopy suggested that CecXJ-37N changed the action mode of parental peptide interacting with bacterial genome from outside binding to a tightly non-covalent intercalation into nucleotides. Overall, this study suggested that amide-modification enhanced antimicrobial activity and reduced the cytotoxicity, thus could be potential strategies for developing novel food preservatives.
Collapse
|