1
|
Järvinen J, Pulkkinen H, Rautio J, Timonen JM. Amino Acid-Based Boron Carriers in Boron Neutron Capture Therapy (BNCT). Pharmaceutics 2023; 15:2663. [PMID: 38140004 PMCID: PMC10748186 DOI: 10.3390/pharmaceutics15122663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Interest in the design of boronated amino acids has emerged, partly due to the utilization of boronophenylalanine (BPA), one of the two agents employed in clinical Boron Neutron Capture Therapy (BNCT). The boronated amino acids synthesized thus far for BNCT investigations can be classified into two categories based on the source of boron: boronic acids or carboranes. Amino acid-based boron carriers, employed in the context of BNCT treatment, demonstrate significant potential in the treatment of challenging tumors, such as those located in the brain. This review aims to shed light on the developmental journey and challenges encountered over the years in the field of amino acid-based boron delivery compound development. The primary focus centers on the utilization of the large amino acid transporter 1 (LAT1) as a target for boron carriers in BNCT. The development of efficient carriers remains a critical objective, addressing challenges related to tumor specificity, effective boron delivery, and rapid clearance from normal tissue and blood. LAT1 presents an intriguing and promising target for boron delivery, given its numerous characteristics that make it well suited for drug delivery into tumor tissues, particularly in the case of brain tumors.
Collapse
Affiliation(s)
- Juulia Järvinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Herkko Pulkkinen
- Department of Technical Physics, Faculty of Science, Forestry and Technology, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Juri M. Timonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|
2
|
Hattori Y, Andoh T, Kawabata S, Hu N, Michiue H, Nakamura H, Nomoto T, Suzuki M, Takata T, Tanaka H, Watanabe T, Ono K. Proposal of recommended experimental protocols for in vitro and in vivo evaluation methods of boron agents for neutron capture therapy. JOURNAL OF RADIATION RESEARCH 2023; 64:859-869. [PMID: 37717596 PMCID: PMC10665309 DOI: 10.1093/jrr/rrad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/19/2023] [Accepted: 08/19/2023] [Indexed: 09/19/2023]
Abstract
Recently, boron neutron capture therapy (BNCT) has been attracting attention as a minimally invasive cancer treatment. In 2020, the accelerator-based BNCT with L-BPA (Borofalan) as its D-sorbitol complex (Steboronine®) for head and neck cancers was approved by Pharmaceutical and Medical Devices Agency for the first time in the world. As accelerator-based neutron generation techniques are being developed in various countries, the development of novel tumor-selective boron agents is becoming increasingly important and desired. The Japanese Society of Neutron Capture Therapy believes it is necessary to propose standard evaluation protocols at each stage in the development of boron agents for BNCT. This review summarizes recommended experimental protocols for in vitro and in vivo evaluation methods of boron agents for BNCT based on our experience with L-BPA approval.
Collapse
Affiliation(s)
- Yoshihide Hattori
- Research Center for BNCT, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai 599-8531, Japan
| | - Tooru Andoh
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan
| | - Naonori Hu
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494 Japan
| | - Hiroyuki Michiue
- Neutron Therapy Research Center, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Takahiro Nomoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494 Japan
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494 Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494 Japan
| | - Tsubasa Watanabe
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494 Japan
| | - Koji Ono
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan
| |
Collapse
|
3
|
Wang S, Zhang Z, Miao L, Li Y. Boron Neutron Capture Therapy: Current Status and Challenges. Front Oncol 2022; 12:788770. [PMID: 35433432 PMCID: PMC9009440 DOI: 10.3389/fonc.2022.788770] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a re-emerging therapy with the ability to selectively kill tumor cells. After the boron delivery agents enter the tumor tissue and enrich the tumor cells, the thermal neutrons trigger the fission of the boron atoms, leading to the release of boron atoms and then leading to the release of the α particles (4He) and recoil lithium particles (7Li), along with the production of large amounts of energy in the narrow region. With the advantages of targeted therapy and low toxicity, BNCT has become a unique method in the field of radiotherapy. Since the beginning of the last century, BNCT has been emerging worldwide and gradually developed into a technology for the treatment of glioblastoma multiforme, head and neck cancer, malignant melanoma, and other cancers. At present, how to develop and innovate more efficient boron delivery agents and establish a more accurate boron-dose measurement system have become the problem faced by the development of BNCT. We discuss the use of boron delivery agents over the past several decades and the corresponding clinical trials and preclinical outcomes. Furthermore, the discussion brings recommendations on the future of boron delivery agents and this therapy.
Collapse
Affiliation(s)
- Song Wang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Ueda H, Suzuki M, Sakurai Y, Tanaka T, Aoki S. Design, Synthesis and Biological Evaluation of Boron‐Containing Macrocyclic Polyamine Dimers and Their Zinc(II) Complexes for Boron Neutron Capture Therapy. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hiroki Ueda
- Faculty of Pharmaceutical Sciences Tokyo University of Science 2641 Yamazaki, Noda Chiba 278-8510 Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science Kyoto University 2-Asashiro-nishi, Kumatori Osaka 590-0494 Japan
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science Kyoto University 2-Asashiro-nishi, Kumatori Osaka 590-0494 Japan
| | - Tomohiro Tanaka
- Faculty of Pharmaceutical Sciences Tokyo University of Science 2641 Yamazaki, Noda Chiba 278-8510 Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences Tokyo University of Science 2641 Yamazaki, Noda Chiba 278-8510 Japan
- Research Institute for Science and Technology Tokyo University of Science 2641 Yamazaki, Noda Chiba 278-8510 Japan
- Research Institute for Biomedical Sciences Tokyo University of Science 2641 Yamazaki, Noda Chiba 278-8510 Japan
| |
Collapse
|
5
|
Yoshimura K, Kawabata S, Kashiwagi H, Fukuo Y, Takeuchi K, Futamura G, Hiramatsu R, Takata T, Tanaka H, Watanabe T, Suzuki M, Hu N, Miyatake SI, Wanibuchi M. Efficacy of Boron Neutron Capture Therapy in Primary Central Nervous System Lymphoma: In Vitro and In Vivo Evaluation. Cells 2021; 10:cells10123398. [PMID: 34943904 PMCID: PMC8699713 DOI: 10.3390/cells10123398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Boron neutron capture therapy (BNCT) is a nuclear reaction-based tumor cell-selective particle irradiation method. High-dose methotrexate and whole-brain radiation therapy (WBRT) are the recommended treatments for primary central nervous system lymphoma (PCNSL). This tumor responds well to initial treatment but relapses even after successful treatment, and the prognosis is poor as there is no safe and effective treatment for relapse. In this study, we aimed to conduct basic research to explore the possibility of using BNCT as a treatment for PCNSL. Methods: The boron concentration in human lymphoma cells was measured. Subsequently, neutron irradiation experiments on lymphoma cells were conducted. A mouse central nervous system (CNS) lymphoma model was created to evaluate the biodistribution of boron after the administration of borono-phenylalanine as a capture agent. In the neutron irradiation study of a mouse PCNSL model, the therapeutic effect of BNCT on PCNSL was evaluated in terms of survival. Results: The boron uptake capability of human lymphoma cells was sufficiently high both in vitro and in vivo. In the neutron irradiation study, the BNCT group showed a higher cell killing effect and prolonged survival compared with the control group. Conclusions: A new therapeutic approach for PCNSL is urgently required, and BNCT may be a promising treatment for PCNSL. The results of this study, including those of neutron irradiation, suggest success in the conduct of future clinical trials to explore the possibility of BNCT as a new treatment option for PCNSL.
Collapse
Affiliation(s)
- Kohei Yoshimura
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki 569-8686, Japan; (K.Y.); (H.K.); (Y.F.); (K.T.); (G.F.); (R.H.); (M.W.)
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki 569-8686, Japan; (K.Y.); (H.K.); (Y.F.); (K.T.); (G.F.); (R.H.); (M.W.)
- Correspondence: ; Tel.: +81-72-63-1221
| | - Hideki Kashiwagi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki 569-8686, Japan; (K.Y.); (H.K.); (Y.F.); (K.T.); (G.F.); (R.H.); (M.W.)
| | - Yusuke Fukuo
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki 569-8686, Japan; (K.Y.); (H.K.); (Y.F.); (K.T.); (G.F.); (R.H.); (M.W.)
| | - Koji Takeuchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki 569-8686, Japan; (K.Y.); (H.K.); (Y.F.); (K.T.); (G.F.); (R.H.); (M.W.)
| | - Gen Futamura
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki 569-8686, Japan; (K.Y.); (H.K.); (Y.F.); (K.T.); (G.F.); (R.H.); (M.W.)
| | - Ryo Hiramatsu
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki 569-8686, Japan; (K.Y.); (H.K.); (Y.F.); (K.T.); (G.F.); (R.H.); (M.W.)
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan 590-0494, Japan; (T.T.); (H.T.); (T.W.); (M.S.)
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan 590-0494, Japan; (T.T.); (H.T.); (T.W.); (M.S.)
| | - Tsubasa Watanabe
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan 590-0494, Japan; (T.T.); (H.T.); (T.W.); (M.S.)
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan 590-0494, Japan; (T.T.); (H.T.); (T.W.); (M.S.)
| | - Naonori Hu
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki 569-8686, Japan; (N.H.); (S.-I.M.)
| | - Shin-Ichi Miyatake
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki 569-8686, Japan; (N.H.); (S.-I.M.)
| | - Masahiko Wanibuchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki 569-8686, Japan; (K.Y.); (H.K.); (Y.F.); (K.T.); (G.F.); (R.H.); (M.W.)
| |
Collapse
|
6
|
Hattori Y, Ishimura M, Ohta Y, Takenaka H, Kawabata S, Kirihata M. Dodecaborate Conjugates Targeting Tumor Cell Overexpressing Translocator Protein for Boron Neutron Capture Therapy. ACS Med Chem Lett 2021; 13:50-54. [PMID: 35059123 PMCID: PMC8762747 DOI: 10.1021/acsmedchemlett.1c00377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/29/2021] [Indexed: 01/16/2023] Open
Abstract
We developed novel closo-dodecaborate ([B12H11]2-) anion-containing translocator protein (TSPO) ligand as a boron carrier for boron neutron capture therapy. This compound shows high water solubility and can deliver boron to TSPO highly expressed in breast cancer cells. We describe the synthesis and in vitro evaluation of a dodecaborate-based pyrazolopyrimidine.
Collapse
Affiliation(s)
- Yoshihide Hattori
- Research
Center of Boron Neutron Capture Therapy, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan,
| | - Miki Ishimura
- Research
Center of Boron Neutron Capture Therapy, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan,Stella
Pharma Co., ORIX Kouraibashi
Bldg., 3-2-7 Kouraibashi, Chuo-ku, Osaka 541-0043, Japan
| | - Youichirou Ohta
- Research
Center of Boron Neutron Capture Therapy, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan,Stella
Pharma Co., ORIX Kouraibashi
Bldg., 3-2-7 Kouraibashi, Chuo-ku, Osaka 541-0043, Japan
| | - Hiroshi Takenaka
- Research
Center of Boron Neutron Capture Therapy, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan,Stella
Pharma Co., ORIX Kouraibashi
Bldg., 3-2-7 Kouraibashi, Chuo-ku, Osaka 541-0043, Japan
| | - Shinji Kawabata
- Department
of Neurosurgery, Osaka Medical and Pharmaceutical
University, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan
| | - Mitsunori Kirihata
- Research
Center of Boron Neutron Capture Therapy, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
7
|
Li F, Luo Z. Boron delivery agents for boron neutron capture therapy. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-1013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Nelyubin AV, Selivanov NA, Klyukin IN, Bykov AY, Zhdanov AP, Zhizhin KY, Kuznetsov NT. New Method for Synthesis of Substituted N-Borylated Dipeptides Based on Acetonitrile Derivative of the closo-Dodecaborate Anion. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621090096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
A new multistage synthesis of the N-borylated dipeptide B12-PheGlyOH has been proposed. The approach is based on the reaction of nucleophilic addition of amino acid derivatives to the [B12H11NCCH3]– anion. The products of each stage have been characterized by multinuclear NMR spectroscopy, IR absorption spectroscopy, and ESI mass spectrometry.
Collapse
|
9
|
Ueda H, Suzuki M, Kuroda R, Tanaka T, Aoki S. Design, Synthesis, and Biological Evaluation of Boron-Containing Macrocyclic Polyamines and Their Zinc(II) Complexes for Boron Neutron Capture Therapy. J Med Chem 2021; 64:8523-8544. [PMID: 34077212 PMCID: PMC8279495 DOI: 10.1021/acs.jmedchem.1c00445] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Boron neutron capture therapy (BNCT)
is a binary therapeutic method
for cancer treatment based on the use of a combination of a cancer-specific
drug containing boron-10 (10B) and thermal neutron irradiation.
For successful BNCT, 10B-containing molecules need to accumulate
specifically in cancer cells, because destructive effect of the generated
heavy particles is limited basically to boron-containing cells. Herein,
we report on the design and synthesis of boron compounds that are
functionalized with 9-, 12-, and 15-membered macrocyclic polyamines
and their Zn2+ complexes. Their cytotoxicity, intracellular
uptake activity into cancer cells and normal cells, and BNCT effect
are also reported. The experimental data suggest that mono- and/or
diprotonated forms of metal-free [12]aneN4- and [15]aneN5-type ligands are uptaken into cancer cells, and their complexes
with intracellular metals such as Zn2+ would induce cell
death upon thermal neutron irradiation, possibly via interactions
with DNA.
Collapse
Affiliation(s)
- Hiroki Ueda
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-nishi, Kumatori, Osaka 590-0494, Japan
| | - Reiko Kuroda
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tomohiro Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Biomedical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
10
|
Gruzdev DA, Levit GL, Krasnov VP, Charushin VN. Carborane-containing amino acids and peptides: Synthesis, properties and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Jenie RI, Utomo RY, Susidarti RA, Novitasari D, Kirihata M, Meiyanto E. The Evaluation of Cytotoxic Properties from CCB-2 Sugar Complexes Against TNBC and Non-TNBC Cells. Asian Pac J Cancer Prev 2021; 22:151-155. [PMID: 33507693 PMCID: PMC8184178 DOI: 10.31557/apjcp.2021.22.1.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 12/02/2022] Open
Abstract
Objective: The progress from Boron Neutron Capture Therapy (BNCT) development urged us to explore new targeted and selective boron carriers. Firstly, we reported the successful synthesis of CCB-2 which exerts a cytotoxic effect against triple negative breast cancer (TNBC) cells. We introduced the new modification of CCB-2 with sugar and alcohol sugars to enhance its solubility in hoping to increase cellular uptake. Methods: CCB-2 fructose complex (CCB-2-F), CCB-2 sorbitol complex (CCB-2-Sor), and CCB-2 xylitol complex (CCB-2-Xy) were obtained with small size within nano-specific particle. All the compounds were then determined for their cytotoxic activities through MTT assay. Results: All compounds were performed cytotoxic activities against TNBC 4T1 and HER-2 positive MCF-7/HER2 cells with good selectivity when tested in immortalized fibroblast cells. Conclusion: Overall, we provided a new modification of CCB-2 through complexation with sugars. Still, further evaluations are needed to develop more efficient CCB-2 as the new candidate of anticancer agent, notably in breast cancer.
Collapse
Affiliation(s)
- Riris Istighfari Jenie
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara II, 55281 Yogyakarta, Indonesia.,Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Rohmad Yudi Utomo
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara II, 55281 Yogyakarta, Indonesia.,Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Ratna Asmah Susidarti
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara II, 55281 Yogyakarta, Indonesia.,Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Dhania Novitasari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Mitsunori Kirihata
- Research Center of Boron Neutron Capture Therapy, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, Japan
| | - Edy Meiyanto
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara II, 55281 Yogyakarta, Indonesia.,Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara II, 55281 Yogyakarta, Indonesia
| |
Collapse
|
12
|
Synthesis and Evaluation of Dodecaboranethiol Containing Kojic Acid (KA-BSH) as a Novel Agent for Boron Neutron Capture Therapy. Cells 2020; 9:cells9061551. [PMID: 32630612 PMCID: PMC7349888 DOI: 10.3390/cells9061551] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/17/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a form of tumor-cell selective particle irradiation using low-energy neutron irradiation of boron-10 (10B) to produce high-linear energy transfer (LET) alpha particles and recoiling 7Li nuclei (10B [n, alpha] 7Li) in tumor cells. Therefore, it is important to achieve the selective delivery of large amounts of 10B to tumor cells, with only small amounts of 10B to normal tissues. To develop practical materials utilizing 10B carriers, we designed and synthesized novel dodecaboranethiol (BSH)-containing kojic acid (KA-BSH). In the present study, we evaluated the effects of this novel 10B carrier on cytotoxicity, 10B concentrations in F98 rat glioma cells, and micro-distribution of KA-BSH in vitro. Furthermore, biodistribution studies were performed in a rat brain tumor model. The tumor boron concentrations showed the highest concentrations at 1 h after the termination of administration. Based on these results, neutron irradiation was evaluated at the Kyoto University Research Reactor Institute (KURRI) with KA-BSH. Median survival times (MSTs) of untreated and irradiated control rats were 29.5 and 30.5 days, respectively, while animals that received KA-BSH, followed by neutron irradiation, had an MST of 36.0 days (p = 0.0027, 0.0053). Based on these findings, further studies are warranted in using KA-BSH as a new B compound for malignant glioma.
Collapse
|
13
|
|
14
|
Cellular uptake evaluation of pentagamaboronon-0 (PGB-0) for boron neutron capture therapy (BNCT) against breast cancer cells. Invest New Drugs 2019; 37:1292-1299. [PMID: 30929158 DOI: 10.1007/s10637-019-00765-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
Abstract
Pentagamaboronon-0 (PGB-0), a curcumin analog compound, has been synthesized as a candidate of boron-carrier pharmaceutical (BCP) for boron neutron capture therapy (BNCT); however, this compound is poorly soluble in water. To improve its solubility, aqueous formulations of PGB-0 with a monosaccharide, fructose or sorbitol, were successfully synthesized, namely PGB-0-F and PGB-0-So, respectively. The cytotoxicity study showed that PGB-0-F and PGB-0-So exerted low cytotoxicity against MCF-7 and MDA-MB 231 breast cancer cells. The cellular uptake study using inductively coupled plasma optical emission spectrometry (ICP-OES) and DAHMI live-cell imaging indicated that these compounds were accumulated and distributed within the cytoplasm and cell nuclei. The cellular uptake mechanism was also evaluated to clarify the contribution of the glucose transporter, and the results demonstrated that these compounds entered through active transport into MCF-7 cells but through passive diffusion into MDA-MB 231 cells. In conclusion, the sugar formulations of PGB-0 only improved PGB-0 solubility but had no role in its cellular uptake.
Collapse
|
15
|
Yinghuai Z, Lin X, Xie H, Li J, Hosmane NS, Zhang Y. The Current Status and Perspectives of Delivery Strategy for Boron-based Drugs. Curr Med Chem 2018; 26:5019-5035. [PMID: 30182851 DOI: 10.2174/0929867325666180904105212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022]
Abstract
Boron-containing compounds are essential micronutrients for animals and plants despite their low-level natural occurrence. They can strengthen the cell walls of the plants and they play important role in supporting bone health. However, surprisingly, boron-containing compounds are seldom found in pharmaceutical drugs. In fact, there are no inherent disadvantages reported so far in terms of the incorporation of boron into medicines. Indeed, drugs based on boron-containing compounds, such as tavaborole (marked name Kerydin) and bortezomib (trade name Velcade) have been investigated and they are used in clinical treatment. In addition, following the advanced development of boron neutron capture therapy and a new emerging proton boron fusion therapy, more boron-containing medicinals are to be expected. This review discusses the current status and perspectives of delivery strategy for boron-containing drugs.
Collapse
Affiliation(s)
- Zhu Yinghuai
- School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau. Macao
| | - Xinglong Lin
- New Drug Research Institute, HEC Pharma Group, Dongguan 523871. China
| | - Hongming Xie
- New Drug Research Institute, HEC Pharma Group, Dongguan 523871. China
| | - Jianlin Li
- HEC Research and Development Center, Dongguan 523871. China
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115-2862. United States
| | - Yingjun Zhang
- New Drug Research Institute, HEC Pharma Group, Dongguan 523871. China
| |
Collapse
|
16
|
Futamura G, Kawabata S, Nonoguchi N, Hiramatsu R, Toho T, Tanaka H, Masunaga SI, Hattori Y, Kirihata M, Ono K, Kuroiwa T, Miyatake SI. Evaluation of a novel sodium borocaptate-containing unnatural amino acid as a boron delivery agent for neutron capture therapy of the F98 rat glioma. Radiat Oncol 2017; 12:26. [PMID: 28114947 PMCID: PMC5260095 DOI: 10.1186/s13014-017-0765-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Boron neutron capture therapy (BNCT) is a unique particle radiation therapy based on the nuclear capture reactions in boron-10. We developed a novel boron-10 containing sodium borocaptate (BSH) derivative, 1-amino-3-fluorocyclobutane-1-carboxylic acid (ACBC)-BSH. ACBC is a tumor selective synthetic amino acid. The purpose of this study was to assess the biodistribution of ACBC-BSH and its therapeutic efficacy following Boron Neutron Capture Therapy (BNCT) of the F98 rat glioma. METHODS We evaluated the biodistribution of three boron-10 compounds, ACBC-BSH, BSH and boronophenylalanine (BPA), in vitro and in vivo, following intravenous (i.v.) administration and intratumoral (i.t.) convection-enhanced delivery (CED) in F98 rat glioma bearing rats. For BNCT studies, rats were stratified into five groups: untreated controls, neutron-irradiation controls, BNCT with BPA/i.v., BNCT with ACBC-BSH/CED, and BNCT concomitantly using BPA/i.v. and ACBC-BSH/CED. RESULTS In vitro, ACBC-BSH attained higher cellular uptake F98 rat glioma cells compared with BSH. In vivo biodistribution studies following i.v. administration and i.t. CED of ACBC-BSH attained significantly higher boron concentrations than that of BSH, but much lower than that of BPA. However, following convection enhanced delivery (CED), ACBC-BSH attained significantly higher tumor concentrations than BPA. The i.t. boron-10 concentrations were almost equal between the ACBC-BSH/CED group and BPA/i.v. group of rats. The tumor/brain boron-10 concentration ratio was higher with ACBC-BSH/CED than that of BPA/i.v. group. Based on these data, BNCT studies were carried out in F98 glioma bearing rats using BPA/i.v. and ACBC-BSH/CED as the delivery agents. The corresponding mean survival times were 37.4 ± 2.6d and 44.3 ± 8.0d, respectively, and although modest, these differences were statistically significant. CONCLUSIONS Our findings suggest that further studies are warranted to evaluate ACBC-BSH/CED as a boron delivery agent.
Collapse
Affiliation(s)
- Gen Futamura
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigakumachi, Takatuki-shi, Osaka, Japan
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigakumachi, Takatuki-shi, Osaka, Japan.
| | - Naosuke Nonoguchi
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigakumachi, Takatuki-shi, Osaka, Japan
| | - Ryo Hiramatsu
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigakumachi, Takatuki-shi, Osaka, Japan
| | - Taichiro Toho
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigakumachi, Takatuki-shi, Osaka, Japan
| | - Hiroki Tanaka
- Kyoto university research reactor institute, 2, Asahiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, Japan
| | - Shin-Ichiro Masunaga
- Kyoto university research reactor institute, 2, Asahiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, Japan
| | - Yoshihide Hattori
- Reserch Organization for the 21th Century, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Japan
| | - Mitsunori Kirihata
- Reserch Organization for the 21th Century, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Japan
| | - Koji Ono
- Kyoto university research reactor institute, 2, Asahiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, Japan
| | - Toshihiko Kuroiwa
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigakumachi, Takatuki-shi, Osaka, Japan
| | - Shin-Ichi Miyatake
- Division for Advanced Medical Development, Cancer Center, Osaka Medical College, 2-7 Daigakumachi, Takatuki-shi, Osaka, Japan
| |
Collapse
|