1
|
Wang L, Li S, Wang K, Wang N, Liu Q, Sun Z, Wang L, Wang L, Liu Q, Song C, Yang Q. Spermine enhances antiviral and anticancer responses by stabilizing DNA binding with the DNA sensor cGAS. Immunity 2023; 56:272-288.e7. [PMID: 36724787 DOI: 10.1016/j.immuni.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/25/2022] [Accepted: 01/04/2023] [Indexed: 02/03/2023]
Abstract
Self-nonself discrimination is vital for the immune system to mount responses against pathogens while maintaining tolerance toward the host and innocuous commensals during homeostasis. Here, we investigated how indiscriminate DNA sensors, such as cyclic GMP-AMP synthase (cGAS), make this self-nonself distinction. Screening of a small-molecule library revealed that spermine, a well-known DNA condenser associated with viral DNA, markedly elevates cGAS activation. Mechanistically, spermine condenses DNA to enhance and stabilize cGAS-DNA binding, optimizing cGAS and downstream antiviral signaling. Spermine promotes condensation of viral, but not host nucleosome, DNA. Deletion of viral DNA-associated spermine, by propagating virus in spermine-deficient cells, reduced cGAS activation. Spermine depletion subsequently attenuated cGAS-mediated antiviral and anticancer immunity. Collectively, our results reveal a pathogenic DNA-associated molecular pattern that facilitates nonself recognition, linking metabolism and pathogen recognition.
Collapse
Affiliation(s)
- Lina Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Siru Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Kai Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Na Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Qiaoling Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Zhen Sun
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Li Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Lulu Wang
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning 116024, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Chengli Song
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Qingkai Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China.
| |
Collapse
|
2
|
Zong L, Cheng G, Zhao J, Zhuang X, Zheng Z, Liu Z, Song F. Inhibitory Effect of Ursolic Acid on the Migration and Invasion of Doxorubicin-Resistant Breast Cancer. Molecules 2022; 27:1282. [PMID: 35209071 PMCID: PMC8879026 DOI: 10.3390/molecules27041282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
The cause of death in most breast cancer patients is disease metastasis and the occurrence of multidrug resistance (MDR). Ornithine decarboxylase (ODC), which is involved into multiple pathways, is closely related to carcinogenesis and development. Ursolic acid (UA), a natural triterpenoid compound, has been shown to reverse the MDR characteristics of tumor cells. However, the effect of UA on the invasion and metastasis of tumor cells with MDR is not known. Therefore, we investigated the effects of UA on invasion and metastasis, ODC-related polyamine metabolism, and MAPK-Erk-VEGF/MMP-9 signaling pathways in a doxorubicin-resistant breast cancer cell (MCF-7/ADR) model. The obtained results showed that UA significantly inhibited the adhesion and migration of MCF-7/ADR cells, and had higher affinities with key active cavity residues of ODC compared to the known inhibitor di-fluoro-methyl-ornithine (DFMO). UA could downregulate ODC, phosphorylated Erk (P-Erk), VEGF, and matrix metalloproteinase-9 (MMP-9) activity. Meanwhile, UA significantly reduced the content of metabolites of the polyamine metabolism. Furthermore, UA increased the intracellular accumulation of Dox in MCF-7/ADR cells. Taken together, UA can inhibit against tumor progression during the treatment of breast cancer with Dox, and possibly modulate the Erk-VEGF/MMP-9 signaling pathways and polyamine metabolism by targeting ODC to exert these effects.
Collapse
Affiliation(s)
- Li Zong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Guorong Cheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingwu Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaoyu Zhuang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhong Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
3
|
Li QZ, Zuo ZW, Zhou ZR, Ji Y. Polyamine homeostasis-based strategies for cancer: The role of combination regimens. Eur J Pharmacol 2021; 910:174456. [PMID: 34464603 DOI: 10.1016/j.ejphar.2021.174456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023]
Abstract
Spermine, spermidine and putrescine polyamines are naturally occurring ubiquitous positively charged amines and are essential metabolites for biological functions in our life. These compounds play a crucial role in many cell processes, including cellular proliferation, growth, and differentiation. Intracellular levels of polyamines depend on their biosynthesis, transport and degradation. Polyamine levels are high in cancer cells, which leads to the promotion of tumor growth, invasion and metastasis. Targeting polyamine metabolism as an anticancer strategy is considerably rational. Due to compensatory mechanisms, a single strategy does not achieve satisfactory clinical effects when using a single agent. Combination regimens are more clinically promising for cancer chemoprevention because they work synergistically with causing little or no adverse effects due to each individual agent being used at lower doses. Moreover, bioactive substances have advantages over single chemical agents because they can affect multiple targets. In this review, we discuss anticancer strategies targeting polyamine metabolism and describe how combination treatments and effective natural active ingredients are promising therapies. The existing research suggests that polyamine metabolic enzymes are important therapeutic targets and that combination therapies can be more effective than monotherapies based on polyamine depletion.
Collapse
Affiliation(s)
- Qi-Zhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China.
| | - Zan-Wen Zuo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Ze-Rong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Yan Ji
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| |
Collapse
|
4
|
Hwang WY, Park WH, Suh DH, Kim K, Kim YB, No JH. Difluoromethylornithine Induces Apoptosis through Regulation of AP-1 Signaling via JNK Phosphorylation in Epithelial Ovarian Cancer. Int J Mol Sci 2021; 22:ijms221910255. [PMID: 34638596 PMCID: PMC8508876 DOI: 10.3390/ijms221910255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 12/24/2022] Open
Abstract
Difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC), has promising activity against various cancers and a tolerable safety profile for long-term use as a chemopreventive agent. However, the anti-tumor effects of DFMO in ovarian cancer cells have not been entirely understood. Our study aimed to identify the effects and mechanism of DFMO in epithelial ovarian cancer cells using SKOV-3 cells. Treatment with DFMO resulted in a significantly reduced cell viability in a time- and dose-dependent manner. DFMO treatment inhibited the activity and downregulated the expression of ODC in ovarian cancer cells. The reduction in cell viability was reversed using polyamines, suggesting that polyamine depletion plays an important role in the anti-tumor activity of DFMO. Additionally, significant changes in Bcl-2, Bcl-xL, Bax protein levels, activation of caspase-3, and cleavage of poly (ADP-ribose) polymerase were observed, indicating the apoptotic effects of DFMO. We also found that the effect of DFMO was mediated by AP-1 through the activation of upstream JNK via phosphorylation. Moreover, DFMO enhanced the effect of cisplatin, thus showing a possibility of a synergistic effect in treatment. In conclusion, treatment with DFMO alone, or in combination with cisplatin, could be a promising treatment for ovarian cancer.
Collapse
Affiliation(s)
- Woo Yeon Hwang
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (W.Y.H.); (W.H.P.); (D.H.S.); (K.K.); (Y.B.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Wook Ha Park
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (W.Y.H.); (W.H.P.); (D.H.S.); (K.K.); (Y.B.K.)
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (W.Y.H.); (W.H.P.); (D.H.S.); (K.K.); (Y.B.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kidong Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (W.Y.H.); (W.H.P.); (D.H.S.); (K.K.); (Y.B.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yong Beom Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (W.Y.H.); (W.H.P.); (D.H.S.); (K.K.); (Y.B.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jae Hong No
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (W.Y.H.); (W.H.P.); (D.H.S.); (K.K.); (Y.B.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-31-787-7253
| |
Collapse
|
5
|
Akinyele O, Wallace HM. Characterising the Response of Human Breast Cancer Cells to Polyamine Modulation. Biomolecules 2021; 11:biom11050743. [PMID: 34067619 PMCID: PMC8156773 DOI: 10.3390/biom11050743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022] Open
Abstract
Breast cancer is a complex heterogeneous disease with multiple underlying causes. The polyamines putrescine, spermidine, and spermine are polycationic molecules essential for cell proliferation. Their biosynthesis is upregulated in breast cancer and they contribute to disease progression. While elevated polyamines are linked to breast cancer cell proliferation, there is little evidence to suggest breast cancer cells of different hormone receptor status are equally dependent on polyamines. In this study, we characterized the responses of two breast cancer cells, ER+ (oestrogen receptor positive) MCF-7 and ER- MDA-MB-231 cell lines, to polyamine modulation and determined the requirement of each polyamine for cancer cell growth. The cells were exposed to DFMO (a polyamine pathway inhibitor) at various concentrations under different conditions, after which several growth parameters were determined. Exposure of both cell lines to DFMO induced differential growth responses, MCF-7 cells showed greater sensitivity to polyamine pathway inhibition at various DFMO concentrations than the MDA-MB-231 cells. Analysis of intracellular DFMO after withdrawal from growth medium showed residual DFMO in the cells with concomitant decreases in polyamine content, ODC protein level, and cell growth. Addition of exogenous polyamines reversed the cell growth inhibition, and this growth recovery appears to be partly dependent on the spermidine content of the cell. Similarly, DFMO exposure inhibits the global translation state of the cells, with spermidine addition reversing the inhibition of translation in the breast cancer cells. Taken together, these data suggest that breast cancer cells are differentially sensitive to the antitumour effects of polyamine depletion, thus, targeting polyamine metabolism might be therapeutically beneficial in breast cancer management based on their subtype.
Collapse
|
6
|
Peng Q, Wong CYP, Cheuk IWY, Teoh JYC, Chiu PKF, Ng CF. The Emerging Clinical Role of Spermine in Prostate Cancer. Int J Mol Sci 2021; 22:ijms22094382. [PMID: 33922247 PMCID: PMC8122740 DOI: 10.3390/ijms22094382] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/31/2023] Open
Abstract
Spermine, a member of polyamines, exists in all organisms and is essential for normal cell growth and function. It is highly expressed in the prostate compared with other organs and is detectable in urine, tissue, expressed prostatic secretions, and erythrocyte. A significant reduction of spermine level was observed in prostate cancer (PCa) tissue compared with benign prostate tissue, and the level of urinary spermine was also significantly lower in men with PCa. Decreased spermine level may be used as an indicator of malignant phenotype transformation from normal to malignant tissue in prostate. Studies targeting polyamines and key rate-limiting enzymes associated with spermine metabolism as a tool for PCa therapy and chemoprevention have been conducted with various polyamine biosynthesis inhibitors and polyamine analogues. The mechanism between spermine and PCa development are possibly related to the regulation of polyamine metabolism, cancer-driving pathways, oxidative stress, anticancer immunosurveillance, and apoptosis regulation. Although the specific mechanism of spermine in PCa development is still unclear, ongoing research in spermine metabolism and its association with PCa pathophysiology opens up new opportunities in the diagnostic and therapeutic roles of spermine in PCa management.
Collapse
Affiliation(s)
| | | | | | | | | | - Chi-Fai Ng
- Correspondence: (P.K.-F.C.); (C.-F.N.); Tel.: +85-235-052-625 (C.-F.N.)
| |
Collapse
|
7
|
Joshi SN, Murphy EA, Olaniyi P, Bryant RJ. The multiple effects of aspirin in prostate cancer patients. Cancer Treat Res Commun 2020; 26:100267. [PMID: 33360326 DOI: 10.1016/j.ctarc.2020.100267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 01/31/2023]
Abstract
Aspirin is a commonly used medication with anti-inflammatory and analgesic properties, and it is widely used to reduce the risk of ischaemic heart disease-related events and/or cerebrovascular accidents. However, there is also evidence from epidemiological and interventional studies to suggest that regular aspirin use can reduce the risk of prostate cancer development and progression, and can reduce the risk of disease recurrence following anti-prostate cancer therapy. Aspirin use in African-American men is associated with a reduced incidence of advanced PCa and reduced disease recurrence, and there is evidence from other studies of an association between regular aspirin use and decreased PCa-related mortality. The cyclooxygenase-2 enzyme inhibited by Aspirin and other NSAIDs, and which catalyses prostaglandin synthesis and mediates inflammation, is overexpressed in prostate cancer, therefore inhibition of cyclooxygenase-2 may have direct, and indirect, therapeutic effects. This review explores the evidence suggesting that aspirin use can modify prostate cancer biology and disease characteristics, and explores the potential mechanisms underpinning the observed associations between aspirin use and modification of prostate cancer risk. It also summarises the potential for adjuvant aspirin use to combine with other therapeutic approaches such as radical surgery and radiotherapy.
Collapse
Affiliation(s)
- S N Joshi
- Medical Sciences Divisional Office, University of Oxford, Level 3, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - E A Murphy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - P Olaniyi
- Department of Urology, Ipswich Hospital, East Suffolk and North Essex NHS Foundation Trust, Heath Road, Ipswich IP4 5PD, United Kingdom
| | - R J Bryant
- Department of Urology, Ipswich Hospital, East Suffolk and North Essex NHS Foundation Trust, Heath Road, Ipswich IP4 5PD, United Kingdom; Department of Urology, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, United Kingdom.
| |
Collapse
|
8
|
Upregulation of Polyamine Transport in Human Colorectal Cancer Cells. Biomolecules 2020; 10:biom10040499. [PMID: 32218236 PMCID: PMC7226413 DOI: 10.3390/biom10040499] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 01/29/2023] Open
Abstract
Polyamines are essential growth factors that have a positive role in cancer cell growth. Their metabolic pathway and the diverse enzymes involved have been studied in depth in multiple organisms and cells. Polyamine transport also contributes to the intracellular polyamine content but this is less well-studied in mammalian cells. As the polyamine transporters could provide a means of selective drug delivery to cancer cells, a greater understanding of polyamine transport and its regulation is needed. In this study, transport of polyamines and polyamine content was measured and the effect of modulating each was determined in human colorectal cancer cells. The results provide evidence that upregulation of polyamine transport depends on polyamine depletion and on the rate of cell growth. Polyamine transport occurred in all colorectal cancer cell lines tested but to varying extents. The cell lines with the lowest basal uptake showed the greatest increase in response to polyamine depletion. Kinetic parameters for putrescine and spermidine suggest the existence of two separate transporters. Transport was shown to be a saturable but non-polarised process that can be regulated both positively and negatively. Using the polyamine transporter to deliver anticancer drugs more selectively is now a reality, and the ability to manipulate the polyamine transport process increases the possibility of using these transporters therapeutically.
Collapse
|
9
|
Wang C, Ruan P, Zhao Y, Li X, Wang J, Wu X, Liu T, Wang S, Hou J, Li W, Li Q, Li J, Dai F, Fang D, Wang C, Xie S. Spermidine/spermine N1-acetyltransferase regulates cell growth and metastasis via AKT/β-catenin signaling pathways in hepatocellular and colorectal carcinoma cells. Oncotarget 2018; 8:1092-1109. [PMID: 27901475 PMCID: PMC5352037 DOI: 10.18632/oncotarget.13582] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/12/2016] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) and colorectal cancer (CRC) are among the most common cancers across the world. Therefore, identifying the potential molecular mechanisms that promote HCC and CRC progression and metastasis are urgently needed. Spermidine/spermine N1-acetyltransferase (SSAT) is a catabolic enzyme that acetylates the high-order polyamines spermine and spermidine, thus decreasing the cellular content of polyamines. Several publications have suggested that depletion of intracellular polyamines inhibited tumor progression and metastasis in various cancer cells. However, whether and how SSAT regulates cell growth, migration and invasion in hepatocellular and colorectal carcinoma cells remains unclear. In this study, depletion of polyamines mediated by SSAT not only attenuated the tumor cell proliferation but also dramatically inhibited cell migration and invasion in hepatocellular and colorectal carcinoma cells. Subsequent investigations revealed introduction of SSAT into HepG2, SMMC7721 hepatocellular carcinoma cells and HCT116 colorectal carcinoma cells significantly suppressed p-AKT, p-GSK3β expression as well as β-catenin nuclear translocation, while inhibition of GSK3β activity or exogenous polyamines could restore SSAT-induced decreases in the protein expression of p-AKT, p-GSK3β and β-catenin. Conversely, knockdown of SSAT in Bel7402 hepatocellular carcinoma cells and HT-29 colorectal carcinoma cells which expressed high levels of SSAT endogenously significantly promoted the expression of p-AKT, p-GSK3β as well as β-catenin nuclear translocation. Taken together, our results indicated depletion of polyamines by SSAT significantly inhibited cell proliferation, migration and invasion through AKT/GSK3β/β-catenin signaling pathway in hepatocellular carcinoma and colorectal cancer cells.
Collapse
Affiliation(s)
- Cong Wang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Ping Ruan
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Ying Zhao
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xiaomin Li
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Jun Wang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xiaoxiao Wu
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Tong Liu
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Shasha Wang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Jiuzhou Hou
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Wei Li
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Qian Li
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Jinghua Li
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Fujun Dai
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Dong Fang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Songqiang Xie
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| |
Collapse
|
10
|
Targeting polyamine metabolism for cancer therapy and prevention. Biochem J 2017; 473:2937-53. [PMID: 27679855 DOI: 10.1042/bcj20160383] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
The chemically simple, biologically complex eukaryotic polyamines, spermidine and spermine, are positively charged alkylamines involved in many crucial cellular processes. Along with their diamine precursor putrescine, their normally high intracellular concentrations require fine attenuation by multiple regulatory mechanisms to keep these essential molecules within strict physiologic ranges. Since the metabolism of and requirement for polyamines are frequently dysregulated in neoplastic disease, the metabolic pathway and functions of polyamines provide rational drug targets; however, these targets have been difficult to exploit for chemotherapy. It is the goal of this article to review the latest findings in the field that demonstrate the potential utility of targeting the metabolism and function of polyamines as strategies for both chemotherapy and, possibly more importantly, chemoprevention.
Collapse
|
11
|
Bilani N, Bahmad H, Abou-Kheir W. Prostate Cancer and Aspirin Use: Synopsis of the Proposed Molecular Mechanisms. Front Pharmacol 2017; 8:145. [PMID: 28377721 PMCID: PMC5359278 DOI: 10.3389/fphar.2017.00145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
Background: Prostate cancer (PCa) is a critical health burden, impacting the morbidity and mortality of millions of men around the world. Most of the patients with PCa have their disease at first sensitive to androgen deprivation treatments, but later they develop resistance to therapy and eventually die of metastatic castration-resistant prostate cancer (CRPC). Although the newly developed anti-androgen therapies are effectively alleviating symptoms and prolonging lives of patients, there are still no curable treatments for CRPC. Recently, statistical studies have shown that the chronic use of aspirin might be significantly associated with better outcomes in PCa patients. Through this review, we aim to identify the different proposed molecular mechanisms relating aspirin to the pathobiology of PCa neoplasms, with a major focus on basic research done in this context. Methods: Articles were retrieved via online database searching of PubMed and MEDLINE between 1946 and September 2016. Keywords and combinations related to PCa and aspirin were used to perform the search. Abstracts of the articles were studied by two independent reviewers and then data extraction was performed on the relevant articles that met our review objectives. Results: Aspirin, a non-steroidal anti-inflammatory drug (NSAID), affects the proliferation, apoptosis, resistance and metastasis of PCa cell lines, through both COX-dependent and COX-independent mechanisms. It also lowers levels of the PCa diagnostic marker prostate specific antigen (PSA), suggesting that clinicians need to at least be aware if their patients are using Aspirin chronically. Conclusion: This review strongly warrants further consideration of the signaling cascades activated by aspirin, which may lead to new knowledge that might be applied to improve diagnosis, prognosis and treatment of PCa.
Collapse
Affiliation(s)
- Nadeem Bilani
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Hisham Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| |
Collapse
|