1
|
Xu H, Gong J, Lu P, Azevedo P, Li L, Yu H, Yang C. Functional evaluation of Bacillus licheniformis PF9 for its potential in controlling enterotoxigenic Escherichia coli in weaned piglets. Transl Anim Sci 2024; 8:txae050. [PMID: 38665217 PMCID: PMC11044710 DOI: 10.1093/tas/txae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
During the bacterial selection, isolate PF9 demonstrated tolerance to low pH and high bile salt and an ability to extend the lifespan of Caenorhabditis elegans infected with enterotoxigenic Escherichia coli (ETEC; P < 0.05). Thirty-two weaned piglets susceptible to ETEC F4 were randomly allocated to four treatments as follows: 1) non-challenged negative control group (NNC; basal diet and piglets gavaged with phosphate-buffered saline), 2) negative control group (NC; basal diet and piglets challenged with ETEC F4, 3 × 107 CFU per pig), 3) positive control (PC; basal diet + 80 mg·kg-1 of avilamycin and piglets challenged with ETEC F4), and 4) probiotic candidate (PF9; control basal diet + 2.5 × 109 CFU·kg-1 diet of B. licheniformis PF9 and piglets challenged with ETEC F4). The infection of ETEC F4 decreased average daily gain and gain:feed in the NC group when compared to the NNC group (P < 0.05). The inoculation of ETEC F4 induced severe diarrhea at 3 h postinoculum (hpi), 36, 40 hpi in the NC group when compared to the NNC group (P < 0.05). The supplementation of B. licheniformis PF9 significantly relieved diarrhea severity at 3 hpi when compared to the NC group (P < 0.05). The inoculation of ETEC F4 reduced duodenal, jejunal, and ileal villus height (VH) in the NC group when compared to the NNC group. A significant (P < 0.05) decrease was detected in the duodenal VH in the PC and NNC groups. Moreover, the NNC group had a reduced relative mRNA level of Na+-glucose cotransporter 1 (SGLT1) when compared to the NC group (P < 0.05). Compared to the NC and NNC groups, the supplementation of B. licheniformis PF9 increased the relative mRNA levels of aminopeptidase N, occludin, zonula occludens-1, and SGLT1 (P < 0.05). The supplementation of B. licheniformis PF9 also significantly increased the relative mRNA level of excitatory amino acid transporter 1 when compared to the NC group (P < 0.05). Piglets supplemented with B. licheniformis PF9 showed lower relative abundance of Bacteroidetes in the colon than piglets from the NNC group (P < 0.05). The NNC group had a higher relative abundance of Firmicutes in the ileum than all the challenged piglets (P < 0.05); however, a lower relative abundance of Proteobacteria in the ileum and colon was observed in the NC group (P < 0.05). This study provides evidence that B. licheniformis PF9 has the potential to improve the gut health of piglets under challenging conditions.
Collapse
Affiliation(s)
- Haoxiang Xu
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, CanadaR3T 2N2
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario, CanadaN1G 5C9
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, CanadaR3T 2N2
| | - Peng Lu
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, CanadaR3T 2N2
| | - Paula Azevedo
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, CanadaR3T 2N2
| | - Linyan Li
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario, CanadaN1G 5C9
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hai Yu
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario, CanadaN1G 5C9
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, CanadaR3T 2N2
| |
Collapse
|
2
|
Mwaniki AW, Buis QR, Trott D, Huber LA, Yang C, Kiarie EG. Comparative efficacy of commercially available deoxynivalenol detoxifying feed additives on growth performance, total tract digestibility of components, and physiological responses in nursery pigs fed diets formulated with naturally contaminated corn. Transl Anim Sci 2021; 5:txab050. [PMID: 34085027 PMCID: PMC8162626 DOI: 10.1093/tas/txab050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/09/2021] [Indexed: 11/14/2022] Open
Abstract
Comparative efficacy of deoxynivalenol (DON) detoxifying feed additives (FA) was evaluated in growth performance (exp. 1) and apparent total tract digestibility (ATTD; exp. 2) nursery pig studies. Six corn-soybean meal-based diets were used: 1) positive control (PC, formulated with <1.5 ppm DON corn), negative control (NC, formulated with 5.5 ppm DON corn), NC + FA1 (clay plus yeast cell wall extract), NC + FA2 (aluminosilicate), NC + FA3 (aluminosilicate plus fungal extract), and NC + FA4 (sodium metabisulfite, SMB). In exp. 1, 144 pigs (body weight [BW], 10.2 ± 0.1kg) were housed (4 pigs/pen), allocated to diets (n = 6) based on BW, and fed for 4-wk. The BW and feed intake were monitored weekly. On d 7, one pig/pen was bled for plasma and euthanized for organ weight and tissue samples. Assayed DON concentration in PC, NC, NC + FA4 was 0.29, 2.86, and 1.21 ppm, respectively. In wk-1, the average daily gain (ADG) of pigs fed NC + FA4 was not different (P > 0.05) to that of pigs fed PC diet but greater (P = 0.01) than for pigs fed NC without or with other FA. Pigs fed NC and NC + FA2 had lower (P = 0.026) average daily feed intake (ADFI) than pigs fed PC and NC + FA3. Pigs fed NC + FA4 had greater (P = 0.003) G:F than pigs fed the other diets. Diets had no effect (P > 0.05) on ADG, ADFI, and G: F after first week, plasma concentration of urea and creatinine or liver and spleen weight. Pigs fed NC diets had greater (P = 0.01) jejunal mRNA expression of superoxide dismutase 1 relative to pigs fed PC or NC plus FA. Jejunal histomorphology and mRNA expression of nutrient transporters, inflammatory cytokines, and tight junction proteins and ceca digesta concentration of short-chain fatty acids were not affected (P > 0.05) by the diet. In exp. 2, 24 barrows (BW 10.2 ± 0.3 kg) were individually placed in metabolism crates and allocated to four diets: PC, NC, NC + FA3, and NC + FA4 (n = 6) containing TiO2 as digestibility marker. Pigs were adjusted to diets for 5 d, followed by a 2-d grab fecal sample collection. Pigs fed PC and NC + FA4 diets had higher ATTD of dry matter, gross energy, and crude protein than NC fed pigs. The FA3 was intermediate in digestibility response. In conclusion, FA containing sequestering component plus fungal extract or SMB in DON-contaminated feed resulted in commensurate nursery pig performance to PC. The tested FA mitigated intestinal oxidative stress through decreased expression of genes for superoxide dismutase.
Collapse
Affiliation(s)
- Alice W Mwaniki
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Quincy R Buis
- Wallenstein Feed & Supply Ltd., Wallenstein, ON, Canada
| | - David Trott
- Wallenstein Feed & Supply Ltd., Wallenstein, ON, Canada
| | - Lee-Anne Huber
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
3
|
Choi J, Wang L, Liu S, Lu P, Zhao X, Liu H, Lahaye L, Santin E, Liu S, Nyachoti M, Yang C. Effects of a microencapsulated formula of organic acids and essential oils on nutrient absorption, immunity, gut barrier function, and abundance of enterotoxigenic Escherichia coli F4 in weaned piglets challenged with E. coli F4. J Anim Sci 2020; 98:skaa259. [PMID: 32780110 PMCID: PMC7526869 DOI: 10.1093/jas/skaa259] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
The objective was to study the effects of microencapsulated organic acids (OA) and essential oils (EO) on growth performance, immune system, gut barrier function, nutrient digestion and absorption, and abundance of enterotoxigenic Escherichia coli F4 (ETEC F4) in the weaned piglets challenged with ETEC F4. Twenty-four ETEC F4 susceptible weaned piglets were randomly distributed to 4 treatments including (1) sham-challenged control (SSC; piglets fed a control diet and challenged with phosphate-buffered saline (PBS)); (2) challenged control (CC; piglets fed a control diet and challenged with ETEC F4); (3) antibiotic growth promoters (AGP; CC + 55 mg·kg-1 of Aureomycin); and (4) microencapsulated OA and EO [P(OA+EO); (CC + 2 g·kg-1 of microencapsulated OA and EO]. The ETEC F4 infection significantly induced diarrhea at 8, 28, 34, and 40 hr postinoculation (hpi) (P < 0.05) in the CC piglets. At 28 d postinoculation (dpi), piglets fed P(OA+EO) had a lower (P < 0.05) diarrhea score compared with those fed CC, but the P(OA+EO) piglets had a lower (P < 0.05) diarrhea score compared with those fed the AGP diets at 40 dpi. The ETEC F4 infection tended to increase in vivo gut permeability measured by the oral gavaging fluorescein isothiocyanate-dextran 70 kDa (FITC-D70) assay in the CC piglets compared with the SCC piglets (P = 0.09). The AGP piglets had higher FITC-D70 flux than P(OA+EO) piglets (P < 0.05). The ETEC F4 infection decreased mid-jejunal VH in the CC piglets compared with the SCC piglets (P < 0.05). The P(OA+EO) piglets had higher (P < 0.05) VH in the mid-jejunum than the CC piglets. The relative mRNA abundance of Na+-glucose cotransporter and B0AT1 was reduced (P < 0.05) by ETEC F4 inoculation when compared with the SCC piglets. The AGP piglets had a greater relative mRNA abundance of B0AT1 than the CC piglets (P < 0.05). The ETEC F4 inoculation increased the protein abundance of OCLN (P < 0.05), and the AGP piglets had the lowest relative protein abundance of OCLN among the challenged groups (P < 0.05). The supplementation of microencapsulated OA and EO enhanced intestinal morphology and showed anti-diarrhea effects in weaned piglets challenged with ETEC F4. Even if more future studies can be required for further validation, this study brings evidence that microencapsulated OA and EO combination can be useful within the tools to be implemented in strategies for alternatives to antibiotics in swine production.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Lucy Wang
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Peng Lu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Xiaoya Zhao
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Haoming Liu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | | | | | - Song Liu
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Martin Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Zhao X, Schindell B, Li W, Ni L, Liu S, Wijerathne CUB, Gong J, Nyachoti CM, O K, Yang C. Distribution and localization of porcine calcium sensing receptor in different tissues of weaned piglets1. J Anim Sci 2019; 97:2402-2413. [PMID: 30887022 PMCID: PMC6541828 DOI: 10.1093/jas/skz096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023] Open
Abstract
Taste receptors including calcium sensing receptor (CaSR) are expressed in various animal tissues, and CaSR plays important roles in nutrient sensing and the physiology, growth, and development of animals. However, molecular distribution of porcine CaSR (pCaSR) in different tissues, especially along the longitudinal axis of the digestive tract in weaned piglets, is still unknown. In the present study, we investigated the distribution and localization of pCaSR in the different tissues including intestinal segments of weaned piglets. Six male pigs were anesthetized and euthanized. Different tissues such as intestinal segments were collected. The pCaSR mRNA abundance, protein abundance, and localization were measured by real-time PCR, Western blotting, and immunohistochemistry, respectively. The mRNA and protein of pCaSR were detected in the kidney, lung, liver, stomach, duodenum, jejunum, ileum, and colon. The pCaSR mRNA was much higher (five to 180 times) in the kidney when compared with other tissues (P < 0.05). The ileum had higher pCaSR mRNA and protein abundances than the stomach, duodenum, jejunum, and colon (P < 0.05). Immunohistochemical staining results indicated that the pCaSR protein was mostly located in the epithelia of the stomach, duodenum, jejunum, ileum, and colon. These results demonstrate that pCaSR is widely expressed in different tissues including intestinal segments in weaned piglets and the ileum has a higher expression level of pCaSR. Further research is needed to confirm the expression of CaSR in the different types of epithelial cells isolated from weaned piglets and characterize the functions of pCaSR, its potential ligands and cell signaling pathways related to CaSR activation in enteroendocrine cells and potentially in enterocytes.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Brayden Schindell
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Weiqi Li
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Liju Ni
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
- Shanghai Lab-Animal Research Center, Shanghai, China
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Charith U B Wijerathne
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
- CCARM, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, ON, Canada
| | - C Martin Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Karmin O
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
- CCARM, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Omonijo FA, Liu S, Hui Q, Zhang H, Lahaye L, Bodin JC, Gong J, Nyachoti M, Yang C. Thymol Improves Barrier Function and Attenuates Inflammatory Responses in Porcine Intestinal Epithelial Cells during Lipopolysaccharide (LPS)-Induced Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:615-624. [PMID: 30567427 DOI: 10.1021/acs.jafc.8b05480] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
It is well-known that essential oil thymol exhibits antibacterial activity. The protective effects of thymol on pig intestine during inflammation is yet to be investigated. In this study, an in vitro lipopolysaccharide (LPS)-induced inflammation model using IPEC-J2 cells was established. Cells were pretreated with thymol for 1 h and then exposed to LPS for various assays. Interleukin 8 (IL-8) secretion, the mRNA abundance of cytokines, reactive oxygen species (ROS), nutrient transporters, and tight junction proteins was measured. The results showed that LPS stimulation increased IL-8 secretion, ROS production, and tumor necrosis factor alpha (TNF-α) mRNA abundance ( P < 0.05), but the mRNA abundance of sodium-dependent glucose transporter 1 (SGLT1), excitatory amino acid transporter 1 (EAAC1), and H+/peptide cotransporter 1 (PepT1) were decreased ( P < 0.05). Thymol blocked ROS production ( P < 0.05) and tended to decrease the production of LPS-induced IL-8 secretion ( P = 0.0766). The mRNA abundance of IL-8 and TNF-α was reduced by thymol pretreatment ( P < 0.05), but thymol did not improve the gene expression of nutrient transporters ( P > 0.05). The transepithelial electrical resistance (TEER) was reduced and cell permeability increased by LPS treatment ( P < 0.05), but these effects were attenuated by thymol ( P < 0.05). Moreover, thymol increased zonula occludens-1 (ZO-1) and actin staining in the cells. However, the mRNA abundance of ZO-1 and occludin-3 was not affected by either LPS or thymol treatments. These results indicated that thymol enhances barrier function and reduce ROS production and pro-inflammatory cytokine gene expression in the epithelial cells during inflammation. The regulation of barrier function by thymol and LPS may be at post-transcriptional or post-translational levels.
Collapse
Affiliation(s)
- Faith A Omonijo
- Department of Animal Science , University of Manitoba , 12 Dafoe Road , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Shangxi Liu
- Department of Animal Science , University of Manitoba , 12 Dafoe Road , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Qianru Hui
- Department of Animal Science , University of Manitoba , 12 Dafoe Road , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Hua Zhang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Ludovic Lahaye
- Jefo Nutrition Inc. , Saint-Hyacinthe , Quebec J2S 7B6 , Canada
| | | | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Martin Nyachoti
- Department of Animal Science , University of Manitoba , 12 Dafoe Road , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Chengbo Yang
- Department of Animal Science , University of Manitoba , 12 Dafoe Road , Winnipeg , Manitoba R3T 2N2 , Canada
| |
Collapse
|