1
|
Le SP, Krishna J, Gupta P, Dutta R, Li S, Chen J, Thayumanavan S. Polymers for Disrupting Protein-Protein Interactions: Where Are We and Where Should We Be? Biomacromolecules 2024; 25:6229-6249. [PMID: 39254158 DOI: 10.1021/acs.biomac.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Protein-protein interactions (PPIs) are central to the cellular signaling and regulatory networks that underlie many physiological and pathophysiological processes. It is challenging to target PPIs using traditional small molecule or peptide-based approaches due to the frequent lack of well-defined binding pockets at the large and flat PPI interfaces. Synthetic polymers offer an opportunity to circumvent these challenges by providing unparalleled flexibility in tuning their physiochemical properties to achieve the desired binding properties. In this review, we summarize the current state of the field pertaining to polymer-protein interactions in solution, highlighting various polyelectrolyte systems, their tunable parameters, and their characterization. We provide an outlook on how these architectures can be improved by incorporating sequence control, foldability, and machine learning to mimic proteins at every structural level. Advances in these directions will enable the design of more specific protein-binding polymers and provide an effective strategy for targeting dynamic proteins, such as intrinsically disordered proteins.
Collapse
Affiliation(s)
- Stephanie P Le
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Jithu Krishna
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Prachi Gupta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Ranit Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Cayrou C, Walrant A, Ravault D, Guitot K, Noinville S, Sagan S, Brigaud T, Gonzalez S, Ongeri S, Chaume G. Incorporation of CF 3-pseudoprolines into polyproline type II foldamers confers promising biophysical features. Chem Commun (Camb) 2024; 60:8609-8612. [PMID: 39046095 DOI: 10.1039/d4cc02895c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The development and the use of fluorinated polyproline-type II (PPII) foldamers are still underexplored. Herein, trifluoromethyl pseudoprolines have been incorporated into polyproline backbones without affecting their PPII helicity. The ability of the trifluoromethyl groups to increase hydrophobicity and to act as 19F NMR probes is demonstrated. Moreover, the enzymatic stability and the non-cytotoxicity of these fluorinated foldamers make them valuable templates for use in medicinal chemistry.
Collapse
Affiliation(s)
- Chloé Cayrou
- CY Cergy Paris Université, CNRS, BioCIS UMR 8076, 95000 Cergy Pontoise, France.
- Université Paris-Saclay, CNRS, BioCIS UMR 8076, 91400 Orsay, France
| | - Astrid Walrant
- Laboratoire des Biomolécules, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, LBM, 75005 Paris, France
| | - Delphine Ravault
- Laboratoire des Biomolécules, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, LBM, 75005 Paris, France
| | - Karine Guitot
- CY Cergy Paris Université, CNRS, BioCIS UMR 8076, 95000 Cergy Pontoise, France.
- Université Paris-Saclay, CNRS, BioCIS UMR 8076, 91400 Orsay, France
| | - Sylvie Noinville
- Laboratoire des Biomolécules, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, LBM, 75005 Paris, France
| | - Sandrine Sagan
- Laboratoire des Biomolécules, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, LBM, 75005 Paris, France
| | - Thierry Brigaud
- CY Cergy Paris Université, CNRS, BioCIS UMR 8076, 95000 Cergy Pontoise, France.
- Université Paris-Saclay, CNRS, BioCIS UMR 8076, 91400 Orsay, France
| | - Simon Gonzalez
- CY Cergy Paris Université, CNRS, BioCIS UMR 8076, 95000 Cergy Pontoise, France.
- Université Paris-Saclay, CNRS, BioCIS UMR 8076, 91400 Orsay, France
| | - Sandrine Ongeri
- Université Paris-Saclay, CNRS, BioCIS UMR 8076, 91400 Orsay, France
| | - Grégory Chaume
- CY Cergy Paris Université, CNRS, BioCIS UMR 8076, 95000 Cergy Pontoise, France.
- Université Paris-Saclay, CNRS, BioCIS UMR 8076, 91400 Orsay, France
| |
Collapse
|
3
|
Okamoto Y, Higuchi M, Matsubara S. Vesicle-like Nanocapsules Formed by Self-Assembly of Peptides with Oligoproline and -Leucine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12802-12809. [PMID: 38850260 DOI: 10.1021/acs.langmuir.4c01412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Since drug carriers are envisaged to be used in a wide variety of situations and environments, nanocarriers with diverse properties, such as biocompatibility, biodegradability, nonimmunogenicity, adequate particle size, robustness, and cell permeability, are required. Here, we report the construction of novel nanocapsules with the above-mentioned features by the self-assembly of peptides composed of oligoproline and oligoleucine (i.e., H-Pro10Leu4-NH2 and H-Pro10Leu6-NH2). The peptides self-organized via hydrogen bonds and hydrophobic interactions between oligoleucine moieties to form vesicle-like nanocapsules with cationic oligoproline exposed on the surface. The guest encapsulation experiments revealed that the nanocapsules were capable of uptake of both water-soluble and insoluble compounds. Furthermore, positively charged and/or oligoproline-based peptides are known to improve cell permeability and cellular uptake, suggesting that the peptide nanocapsules are good candidates for nanocarriers to complement liposomes and polymer micelles.
Collapse
Affiliation(s)
- Yui Okamoto
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Masahiro Higuchi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Shogo Matsubara
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| |
Collapse
|
4
|
Herrera MG, Amundarain MJ, Dörfler PW, Dodero VI. The Celiac-Disease Superantigen Oligomerizes and Increases Permeability in an Enterocyte Cell Model. Angew Chem Int Ed Engl 2024; 63:e202317552. [PMID: 38497459 DOI: 10.1002/anie.202317552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Celiac disease (CeD) is an autoimmune disorder triggered by gluten proteins, affecting approximately 1 % of the global population. The 33-mer deamidated gliadin peptide (DGP) is a metabolically modified wheat-gluten superantigen for CeD. Here, we demonstrate that the 33-mer DGP spontaneously assembles into oligomers with a diameter of approximately 24 nm. The 33-mer DGP oligomers present two main secondary structural motifs-a major polyproline II helix and a minor β-sheet structure. Importantly, in the presence of 33-mer DGP oligomers, there is a statistically significant increase in the permeability in the gut epithelial cell model Caco-2, accompanied by the redistribution of zonula occludens-1, a master tight junction protein. These findings provide novel molecular and supramolecular insights into the impact of 33-mer DGP in CeD and highlight the relevance of gliadin peptide oligomerization.
Collapse
Affiliation(s)
- Maria G Herrera
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, C1428EG, Argentina
| | - Maria J Amundarain
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Philipp W Dörfler
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Veronica I Dodero
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
5
|
Garsi JB, Aguiar PM, Berger G, Maris T, Hanessian S. Pseudodiproline (Pro-Cyp) Oligomers Fold into Helical Polyproline Type secondary structures. J Org Chem 2024; 89:4283-4293. [PMID: 38489026 DOI: 10.1021/acs.joc.3c02840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The synthesis and conformational properties of oligo-proline mimetics composed of dimeric and tetrameric Pro-Cyp constructs linked by a hydroxymethylene unit are reported. Oligomers were studied both in the solid state and in solution, unveiling right-handed helical conformation depending on the configuration of the vicinally substituted trans-cyclopentane carboxylic acid unit (Cyp). Unlike polyproline oligomers, the alternating synthetic Pro-Cyp counterparts are not stabilized by n-π* interactions but rely instead on the steric demands of the extended backbone conformation within the hydroxymethylene-linked Pro-Cyp repeating units.
Collapse
Affiliation(s)
- Jean-Baptiste Garsi
- Department of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, H2V 0B3 QC Canada
| | - Pedro M Aguiar
- Department of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, H2V 0B3 QC Canada
| | - Gilles Berger
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Thierry Maris
- Department of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, H2V 0B3 QC Canada
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, H2V 0B3 QC Canada
| |
Collapse
|
6
|
Meuskens I, Kristiansen PE, Bardiaux B, Koynarev VR, Hatlem D, Prydz K, Lund R, Izadi-Pruneyre N, Linke D. A poly-proline II helix in YadA from Yersinia enterocolitica serotype O:9 facilitates heparin binding through electrostatic interactions. FEBS J 2024; 291:761-777. [PMID: 37953437 DOI: 10.1111/febs.17001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Poly-proline II helices are secondary structure motifs frequently found in ligand-binding sites. They exhibit increased flexibility and solvent exposure compared to the strongly hydrogen-bonded α-helices or β-strands and can therefore easily be misinterpreted as completely unstructured regions with an extremely high rotational freedom. Here, we show that the adhesin YadA of Yersinia enterocolitica serotype O:9 contains a poly-proline II helix interaction motif in the N-terminal region. The motif is involved in the interaction of YadAO:9 with heparin, a host glycosaminoglycan. We show that the basic residues within the N-terminal motif of YadA are required for electrostatic interactions with the sulfate groups of heparin. Biophysical methods including CD spectroscopy, solution-state NMR and SAXS all independently support the presence of a poly-proline helix allowing YadAO:9 binding to the rigid heparin. Lastly, we show that host cells deficient in sulfation of heparin and heparan sulfate are not targeted by YadAO:9 -mediated adhesion. We speculate that the YadAO:9 -heparin interaction plays an important and highly strain-specific role in the pathogenicity of Yersinia enterocolitica serotype O:9.
Collapse
Affiliation(s)
- Ina Meuskens
- Department of Biosciences, University of Oslo, Norway
| | | | - Benjamin Bardiaux
- Structural Bioinformatics Unit, CNRS UMR3528, Institut Pasteur, Université de Paris-Cité, France
| | | | - Daniel Hatlem
- Department of Biosciences, University of Oslo, Norway
| | | | - Reidar Lund
- Department of Chemistry, University of Oslo, Norway
| | - Nadia Izadi-Pruneyre
- Bacterial Transmembrane Systems Unit, CNRS UMR3528, Institut Pasteur, Université de Paris-Cité, France
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
7
|
Promising Perspectives of the Antiproliferative GPER Inverse Agonist ERα17p in Breast Cancer. Cells 2023; 12:cells12040653. [PMID: 36831322 PMCID: PMC9954065 DOI: 10.3390/cells12040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The estrogen receptor α (ERα) corresponds to a large platform in charge of the recruitment of a panel of molecules, including steroids and related heterocyclic derivatives, oligonucleotides, peptides and proteins. Its 295-311 region is particularly targeted by post-translational modifications, suggesting that it could be crucial for the control of transcription. In addition to anionic phospholipids, the ERα 295-311 fragment interacts with Ca2+-calmodulin, the heat shock protein 70 (Hsp70), ERα and possibly importins. More recently, we have demonstrated that it is prone to interacting with the G-protein-coupled estrogen receptor (GPER). In light of these observations, the pharmacological profile of the corresponding peptide, namely ERα17p, has been explored in breast cancer cells. Remarkably, it exerts apoptosis through GPER and induces a significant decrease (more than 50%) of the size of triple-negative breast tumor xenografts in mice. Herein, we highlight not only the promising therapeutic perspectives in the use of the first peptidic GPER modulator ERα17p, but also the opportunity to modulate GPER for clinical purposes.
Collapse
|
8
|
Identification of a human estrogen receptor α tetrapeptidic fragment with dual antiproliferative and anti-nociceptive action. Sci Rep 2023; 13:1326. [PMID: 36693877 PMCID: PMC9873809 DOI: 10.1038/s41598-023-28062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
The synthetic peptide ERα17p (sequence: PLMIKRSKKNSLALSLT), which corresponds to the 295-311 region of the human estrogen receptor α (ERα), induces apoptosis in breast cancer cells. In mice and at low doses, it promotes not only the decrease of the size of xenografted triple-negative human breast tumors, but also anti-inflammatory and anti-nociceptive effects. Recently, we have shown that these effects were due to its interaction with the seven-transmembrane G protein-coupled estrogen receptor GPER. Following modeling studies, the C-terminus of this peptide (sequence: NSLALSLT) remains compacted at the entrance of the GPER ligand-binding pocket, whereas its N-terminus (sequence: PLMI) engulfs in the depth of the same pocket. Thus, we have hypothesized that the PLMI motif could support the pharmacological actions of ERα17p. Here, we show that the PLMI peptide is, indeed, responsible for the GPER-dependent antiproliferative and anti-nociceptive effects of ERα17p. By using different biophysical approaches, we demonstrate that the NSLALSLT part of ERα17p is responsible for aggregation. Overall, the tetrapeptide PLMI, which supports the action of the parent peptide ERα17p, should be considered as a hit for the synthesis of new GPER modulators with dual antiproliferative and anti-nociceptive actions. This study highlights also the interest to modulate GPER for the control of pain.
Collapse
|
9
|
Pollastrini M, Pasquinelli L, Górecki M, Balzano F, Cupellini L, Lipparini F, Uccello Barretta G, Marchetti F, Pescitelli G, Angelici G. A Unique and Stable Polyproline I Helix Sorted out from Conformational Equilibrium by Solvent Polarity. J Org Chem 2022; 87:13715-13725. [PMID: 36242553 PMCID: PMC9639007 DOI: 10.1021/acs.joc.2c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polyproline I helical structures are often considered as the hidden face of their most famous geminal sibling, Polyproline II, as PPI is generally spotted only within a conformational equilibrium. We designed and synthesized a stable Polyproline I structure exploiting the striking tendency of (S)-indoline-2-carboxylic acid to drive the peptide bond conformation toward the cis amide isomer, when dissolved in polar solvents. The cooperative effect of only four amino acidic units is sufficient to form a preferential structure in solution. We shed light on this rare secondary structure with a thorough analysis of the spectroscopic and chiroptical properties of the tetramer, supported by X-ray crystallography and computational studies.
Collapse
Affiliation(s)
- Matteo Pollastrini
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Luca Pasquinelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Marcin Górecki
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy,Institute
of Organic Chemistry, Polish Academy of
Sciences, ul. Kasprzaka
44/52, Warsaw 01-224, Poland
| | - Federica Balzano
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Lorenzo Cupellini
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Filippo Lipparini
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Gloria Uccello Barretta
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Fabio Marchetti
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Gennaro Pescitelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy,
| | - Gaetano Angelici
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy,
| |
Collapse
|
10
|
Imaizumi K, Ifuku K. Binding and functions of the two chloride ions in the oxygen-evolving center of photosystem II. PHOTOSYNTHESIS RESEARCH 2022; 153:135-156. [PMID: 35698013 DOI: 10.1007/s11120-022-00921-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Light-driven water oxidation in photosynthesis occurs at the oxygen-evolving center (OEC) of photosystem II (PSII). Chloride ions (Cl-) are essential for oxygen evolution by PSII, and two Cl- ions have been found to specifically bind near the Mn4CaO5 cluster in the OEC. The retention of these Cl- ions within the OEC is critically supported by some of the membrane-extrinsic subunits of PSII. The functions of these two Cl- ions and the mechanisms of their retention both remain to be fully elucidated. However, intensive studies performed recently have advanced our understanding of the functions of these Cl- ions, and PSII structures from various species have been reported, aiding the interpretation of previous findings regarding Cl- retention by extrinsic subunits. In this review, we summarize the findings to date on the roles of the two Cl- ions bound within the OEC. Additionally, together with a short summary of the functions of PSII membrane-extrinsic subunits, we discuss the mechanisms of Cl- retention by these extrinsic subunits.
Collapse
Affiliation(s)
- Ko Imaizumi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kentaro Ifuku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
11
|
Sahariah B, Sarma BK. Deciphering the Backbone Noncovalent Interactions that Stabilize Polyproline II Conformation and Reduce cis Proline Abundance in Polyproline Tracts. J Phys Chem B 2021; 125:13394-13405. [PMID: 34851647 DOI: 10.1021/acs.jpcb.1c07875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proline (Pro) has a higher propensity to adopt cis amide geometry than the other natural amino acids, and a poly-Pro (poly-P) tract can adopt either a polyproline I (PPI, all cis amide) or a polyproline II (PPII, all trans amide) helical conformation. Recent studies have revealed a reduced abundance of cis amide geometry among the inner Pro residues of a poly-P tract. However, the forces that stabilize the polyproline helices and the reason for the higher trans amide propensity of the inner Pro residues of a poly-P tract are poorly understood. Herein, we have studied both Pro and non-Pro PPII helical sequences and identified the backbone noncovalent interactions that are crucial to the higher stability of the trans Pro-amide geometry and the preference for a PPII helical conformation. We show the presence of reciprocal CO···CO interactions that extend over the whole PPII helical region. Interestingly, the CO···CO interactions strengthen with the increase in the PPII helical chain length and the inner CO groups possess stronger CO···CO interactions, which could explain the reduced cis abundance of the inner Pro residues of a poly-P tract. We also identified a much stronger (∼0.9 kcal·mol-1) nO → σ*Cα-Cβ interaction between the N-terminal CO oxygen lone pair and the antibonding orbital (σ*) of their Cα-Cβ bonds. As the nO → σ*Cα-Cβ interaction is possible only in the trans isomers of Pro, this interaction should be crucial for the stabilization of a PPII helix. Finally, an unusual nN(amide) → σ*C-N interaction (∼0.3 kcal·mol-1) was observed between the peptidic nitrogen lone pair (nN) and the antibonding orbital (σ*C-N) of the subsequent C-terminal peptide C-N bond. We propose a cumulative effect of these interactions in the stabilization of a PPII helix.
Collapse
Affiliation(s)
- Biswajit Sahariah
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Bani Kanta Sarma
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
12
|
Garsi JB, Aguiar PM, Hanessian S. Design of Pseudodiproline Dimers as Mimetics of Pro-Pro Units: Stereocontrolled Synthesis, Configurational Relevance, and Structural Properties. J Org Chem 2021; 86:16834-16847. [PMID: 34749500 DOI: 10.1021/acs.joc.1c02061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stereocontrolled methods are described for the synthesis of hitherto unreported pseudodiproline dimers in which a cyclopentane carboxylic acid is linked to a pyrrolidine residue by a stereochemically defined hydroxymethylene tether. These proline-cyclopentane (Pro-Cyp) dimers have interesting structural characteristics as seen in their X-ray crystal structures as well as their nuclear magnetic resonance (NMR) spectra in CDCl3. They can be considered to be novel Pro-Pro mimetics, which can be used to replace natural diproline sequences with potential applications in medicinal chemistry. They also represent a new concept in the peptidomimetic design of chimeric proline-based amino acids as carbocyclic hydroxyethylene isosteres of inhibitor molecules, in which the stereodefined bridging hydroxyl group can simulate a tetrahedral intermediate in an enzyme complex.
Collapse
Affiliation(s)
- Jean-Baptiste Garsi
- Department of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, H2V 0B3 QC, Canada
| | - Pedro M Aguiar
- Department of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, H2V 0B3 QC, Canada
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, H2V 0B3 QC, Canada
| |
Collapse
|
13
|
Sladek V, Harada R, Shigeta Y. Residue Folding Degree-Relationship to Secondary Structure Categories and Use as Collective Variable. Int J Mol Sci 2021; 22:ijms222313042. [PMID: 34884847 PMCID: PMC8657879 DOI: 10.3390/ijms222313042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022] Open
Abstract
Recently, we have shown that the residue folding degree, a network-based measure of folded content in proteins, is able to capture backbone conformational transitions related to the formation of secondary structures in molecular dynamics (MD) simulations. In this work, we focus primarily on developing a collective variable (CV) for MD based on this residue-bound parameter to be able to trace the evolution of secondary structure in segments of the protein. We show that this CV can do just that and that the related energy profiles (potentials of mean force, PMF) and transition barriers are comparable to those found by others for particular events in the folding process of the model mini protein Trp-cage. Hence, we conclude that the relative segment folding degree (the newly proposed CV) is a computationally viable option to gain insight into the formation of secondary structures in protein dynamics. We also show that this CV can be directly used as a measure of the amount of α-helical content in a selected segment.
Collapse
Affiliation(s)
- Vladimir Sladek
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
- Correspondence:
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (R.H.); (Y.S.)
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (R.H.); (Y.S.)
| |
Collapse
|
14
|
Pinet L, Assrir N, van Heijenoort C. Expanding the Disorder-Function Paradigm in the C-Terminal Tails of Erbbs. Biomolecules 2021; 11:1690. [PMID: 34827688 PMCID: PMC8615588 DOI: 10.3390/biom11111690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
ErbBs are receptor tyrosine kinases involved not only in development, but also in a wide variety of diseases, particularly cancer. Their extracellular, transmembrane, juxtamembrane, and kinase folded domains were described extensively over the past 20 years, structurally and functionally. However, their whole C-terminal tails (CTs) following the kinase domain were only described at atomic resolution in the last 4 years. They were shown to be intrinsically disordered. The CTs are known to be tyrosine-phosphorylated when the activated homo- or hetero-dimers of ErbBs are formed. Their phosphorylation triggers interaction with phosphotyrosine binding (PTB) or Src Homology 2 (SH2) domains and activates several signaling pathways controling cellular motility, proliferation, adhesion, and apoptosis. Beyond this passive role of phosphorylated domain and site display for partners, recent structural and function studies unveiled active roles in regulation of phosphorylation and interaction: the CT regulates activity of the kinase domain; different phosphorylation states have different compaction levels, potentially modulating the succession of phosphorylation events; and prolines have an important role in structure, dynamics, and possibly regulatory interactions. Here, we review both the canonical role of the disordered CT domains of ErbBs as phosphotyrosine display domains and the recent findings that expand the known range of their regulation functions linked to specific structural and dynamic features.
Collapse
|
15
|
Brinkjost T, Ehrt C, Koch O, Mutzel P. SCOT: Rethinking the classification of secondary structure elements. Bioinformatics 2020; 36:2417-2428. [PMID: 31742326 DOI: 10.1093/bioinformatics/btz826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/02/2019] [Accepted: 11/16/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Secondary structure classification is one of the most important issues in structure-based analyses due to its impact on secondary structure prediction, structural alignment and protein visualization. There are still open challenges concerning helix and sheet assignments which are currently not addressed by a single multi-purpose software. RESULTS We introduce SCOT (Secondary structure Classification On Turns) as a novel secondary structure element assignment software which supports the assignment of turns, right-handed α-, 310- and π-helices, left-handed α- and 310-helices, 2.27- and polyproline II helices, β-sheets and kinks. We demonstrate that the introduction of helix Purity values enables a clear differentiation between helix classes. SCOT's unique strengths are highlighted by comparing it to six state-of-the-art methods (DSSP, STRIDE, ASSP, SEGNO, DISICL and SHAFT). The assignment approaches were compared concerning geometric consistency, protein structure quality and flexibility dependency and their impact on secondary structure element-based structural alignments. We show that only SCOT's combination of hydrogen bonds, geometric criteria and dihedral angles enables robust assignments independent of the structure quality and flexibility. We demonstrate that this combination and the elaborate kink detection lead to SCOT's clear superiority for protein alignments. As the resulting helices and strands are provided in a PDB conform output format, they can immediately be used for structure alignment algorithms. Taken together, the application of our new method and the straight-forward visualization using the accompanying PyMOL scripts enable the comprehensive analysis of regular backbone geometries in proteins. AVAILABILITY AND IMPLEMENTATION https://this-group.rocks. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tobias Brinkjost
- Department of Computer Science.,Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
| | - Christiane Ehrt
- Department of Computer Science.,Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
| | - Oliver Koch
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
| | | |
Collapse
|
16
|
de Brevern AG. Impact of protein dynamics on secondary structure prediction. Biochimie 2020; 179:14-22. [PMID: 32946990 DOI: 10.1016/j.biochi.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
Protein 3D structures support their biological functions. As the number of protein structures is negligible in regards to the number of available protein sequences, prediction methodologies relying only on protein sequences are essential tools. In this field, protein secondary structure prediction (PSSPs) is a mature area, and is considered to have reached a plateau. Nonetheless, proteins are highly dynamical macromolecules, a property that could impact the PSSP methods. Indeed, in a previous study, the stability of local protein conformations was evaluated demonstrating that some regions easily changed to another type of secondary structure. The protein sequences of this dataset were used by PSSPs and their results compared to molecular dynamics to investigate their potential impact on the quality of the secondary structure prediction. Interestingly, a direct link is observed between the quality of the prediction and the stability of the assignment to the secondary structure state. The more stable a local protein conformation is, the better the prediction will be. The secondary structure assignment not taken from the crystallized structures but from the conformations observed during the dynamics slightly increase the quality of the secondary structure prediction. These results show that evaluation of PSSPs can be done differently, but also that the notion of dynamics can be included in development of PSSPs and other approaches such as de novo approaches.
Collapse
Affiliation(s)
- Alexandre G de Brevern
- Biologie Intégrée Du Globule Rouge UMR_S1134, Inserm, Université de Paris, Univ. de la Réunion, Univ. des Antilles, F-75739, Paris, France; Laboratoire D'Excellence GR-Ex, F-75739, Paris, France; Institut National de la Transfusion Sanguine (INTS), F-75739, Paris, France; IBL, F-75015, Paris, France.
| |
Collapse
|
17
|
Monitoring the Site-Specific Solid-State NMR Data in Oligopeptides. Int J Mol Sci 2020; 21:ijms21082700. [PMID: 32295042 PMCID: PMC7215618 DOI: 10.3390/ijms21082700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Reliable values of the solid-state NMR (SSNMR) parameters together with precise structural data specific for a given amino acid site in an oligopeptide are needed for the proper interpretation of measurements aiming at an understanding of oligopeptides' function. The periodic density functional theory (DFT)-based computations of geometries and SSNMR chemical shielding tensors (CSTs) of solids are shown to be accurate enough to support the SSNMR investigations of suitably chosen models of oriented samples of oligopeptides. This finding is based on a thorough comparison between the DFT and experimental data for a set of tripeptides with both 13Cα and 15Namid CSTs available from the single-crystal SSNMR measurements and covering the three most common secondary structural elements of polypeptides. Thus, the ground is laid for a quantitative description of local spectral parameters of crystalline oligopeptides, as demonstrated for the backbone 15Namid nuclei of samarosporin I, which is a pentadecapeptide (composed of five classical and ten nonproteinogenic amino acids) featuring a strong antimicrobial activity.
Collapse
|
18
|
Matsushima N, Miyashita H, Tamaki S, Kretsinger RH. Polyproline II Helix as a Recognition Motif of Plant Peptide Hormones and Flagellin Peptide flg22. Protein Pept Lett 2019; 26:684-690. [DOI: 10.2174/0929866526666190408125441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
Background:
Plant peptide hormones play a crucial role in plant growth and
development. A group of these peptide hormones are signaling peptides with 5 - 23 amino acids.
Flagellin peptide (flg22) also elicits an immune response in plants. The functions are expressed
through recognition of the peptide hormones and flg22. This recognition relies on membrane
localized receptor kinases with extracellular leucine rich repeats (LRR-RKs). The structures of
plant peptide hormones - AtPep1, IDA, IDL1, RGFs 1- 3, TDIF/CLE41 - and of flg22 complexed
with LRR domains of corresponding LRRRKs and co-receptors SERKs have been determined.
However, their structures are well not analyzed and characterized in detail. The structures of PIP,
CEP, CIF, and HypSys are still unknown.
Objective:
Our motivation is to clarify structural features of these plant, small peptides and Flg22 in
their bound states.
Methods:
In this article, we performed secondary structure assignments and HELFIT analyses
(calculating helix axis, pitch, radius, residues per turn, and handedness) based on the atomic
coordinates from the crystal structures of AtPep1, IDA, IDL1, RGFs 1- 3, TDIF/CLE41 - and of
flg22. We also performed sequence analysis of the families of PIP, CEP, CIF, and HypSys in order
to predict their secondary structures.
Results:
Following AtPep1 with 23 residues adopts two left handed polyproline helices (PPIIs)
with six and four residues. IDA, IDL1, RGFs 1 - 2, and TDIF/CLE41 with 12 or 13 residues adopt
a four residue PPII; RGF3 adopts two PPIIs with four residues. Flg22 with 22 residues also adopts a
six residue PPII. The other peptide hormones – PIP, CEP, CIF, and HypSys – that are rich in
proline or hydroxyproline presumably prefer PPII.
Conclusion:
The present analysis indicates that PPII helix in the plant small peptide hormones and
in flg22 is crucial for recognition of the LRR domains in receptors.
Collapse
Affiliation(s)
| | | | | | - Robert H. Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|
19
|
Narwani TJ, Craveur P, Shinada NK, Floch A, Santuz H, Vattekatte AM, Srinivasan N, Rebehmed J, Gelly JC, Etchebest C, de Brevern AG. Discrete analyses of protein dynamics. J Biomol Struct Dyn 2019; 38:2988-3002. [PMID: 31361191 DOI: 10.1080/07391102.2019.1650112] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protein structures are highly dynamic macromolecules. This dynamics is often analysed through experimental and/or computational methods only for an isolated or a limited number of proteins. Here, we explore large-scale protein dynamics simulation to observe dynamics of local protein conformations using different perspectives. We analysed molecular dynamics to investigate protein flexibility locally, using classical approaches such as RMSf, solvent accessibility, but also innovative approaches such as local entropy. First, we focussed on classical secondary structures and analysed specifically how β-strand, β-turns, and bends evolve during molecular simulations. We underlined interesting specific bias between β-turns and bends, which are considered as the same category, while their dynamics show differences. Second, we used a structural alphabet that is able to approximate every part of the protein structures conformations, namely protein blocks (PBs) to analyse (i) how each initial local protein conformations evolve during dynamics and (ii) if some exchange can exist among these PBs. Interestingly, the results are largely complex than simple regular/rigid and coil/flexible exchange. AbbreviationsNeqnumber of equivalentPBProtein BlocksPDBProtein DataBankRMSfroot mean square fluctuationsCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tarun Jairaj Narwani
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, Paris, France.,Laboratoire D'Excellence GR-Ex, Paris, France.,Institut National de la Transfusion Sanguine (INTS), Paris, France
| | - Pierrick Craveur
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, Paris, France.,Laboratoire D'Excellence GR-Ex, Paris, France.,Institut National de la Transfusion Sanguine (INTS), Paris, France.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicolas K Shinada
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, Paris, France.,Laboratoire D'Excellence GR-Ex, Paris, France.,Institut National de la Transfusion Sanguine (INTS), Paris, France.,Discngine, SAS, Paris, France
| | - Aline Floch
- Laboratoire D'Excellence GR-Ex, Paris, France.,Etablissement Français du Sang Ile de France, Créteil, France.,IMRB - INSERM U955 Team 2 « Transfusion et Maladies du Globule Rouge », Paris Est- Créteil Univ, Créteil, France.,UPEC, Université Paris Est-Créteil, Créteil, France
| | - Hubert Santuz
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, Paris, France.,Laboratoire D'Excellence GR-Ex, Paris, France.,Institut National de la Transfusion Sanguine (INTS), Paris, France
| | - Akhila Melarkode Vattekatte
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, Paris, France.,Laboratoire D'Excellence GR-Ex, Paris, France.,Institut National de la Transfusion Sanguine (INTS), Paris, France.,Faculté Des Sciences et Technologies, Saint Denis Messag, La Réunion, France
| | | | - Joseph Rebehmed
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, Paris, France.,Laboratoire D'Excellence GR-Ex, Paris, France.,Institut National de la Transfusion Sanguine (INTS), Paris, France.,Department of Computer Science and Mathematics, Lebanese American University, Byblos, Lebanon
| | - Jean-Christophe Gelly
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, Paris, France.,Laboratoire D'Excellence GR-Ex, Paris, France.,Institut National de la Transfusion Sanguine (INTS), Paris, France.,Faculté Des Sciences et Technologies, Saint Denis Messag, La Réunion, France.,IBL, Paris, France
| | - Catherine Etchebest
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, Paris, France.,Laboratoire D'Excellence GR-Ex, Paris, France.,Institut National de la Transfusion Sanguine (INTS), Paris, France.,Faculté Des Sciences et Technologies, Saint Denis Messag, La Réunion, France
| | - Alexandre G de Brevern
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, Paris, France.,Laboratoire D'Excellence GR-Ex, Paris, France.,Institut National de la Transfusion Sanguine (INTS), Paris, France.,Faculté Des Sciences et Technologies, Saint Denis Messag, La Réunion, France.,IBL, Paris, France
| |
Collapse
|
20
|
Meirson T, Bomze D, Kahlon L, Gil-Henn H, Samson AO. A helical lock and key model of polyproline II conformation with SH3. Bioinformatics 2019; 36:154-159. [DOI: 10.1093/bioinformatics/btz527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 11/12/2022] Open
Abstract
Abstract
Motivation
More than half of the human proteome contains the proline-rich motif, PxxP. This motif has a high propensity for adopting a left-handed polyproline II (PPII) helix and can potentially bind SH3 domains. SH3 domains are generally grouped into two classes, based on whether the PPII binds in a positive (N-to-C terminal) or negative (C-to-N terminal) orientation. Since the discovery of this structural motif, over six decades ago, a systematic understanding of its binding remains poor and the consensus amino acid sequence that binds SH3 domains is still ill defined.
Results
Here, we show that the PPII interaction with SH3 domains is governed by the helix backbone and its prolines, and their rotation angle around the PPII helical axis. Based on a geometric analysis of 131 experimentally solved SH3 domains in complex with PPIIs, we observed a rotary translation along the helical screw axis, and separated them by 120° into three categories we name α (0–120°), β (120–240°) and γ (240–360°). Furthermore, we found that PPII helices are distinguished by a shifting PxxP motif preceded by positively charged residues which act as a structural reading frame and dictates the organization of SH3 domains; however, there is no one single consensus motif for all classified PPIIs. Our results demonstrate a remarkable apparatus of a lock with a rotating and translating key with no known equivalent machinery in molecular biology. We anticipate our model to be a starting point for deciphering the PPII code, which can unlock an exponential growth in our understanding of the relationship between protein structure and function.
Availability and implementation
We have implemented the proposed methods in the R software environment and in an R package freely available at https://github.com/Grantlab/bio3d.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tomer Meirson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Safed 1589, Israel
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1589, Israel
| | - David Bomze
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 39040, Israel
| | - Liron Kahlon
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1589, Israel
| | - Hava Gil-Henn
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1589, Israel
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Safed 1589, Israel
| |
Collapse
|
21
|
Langella E, Buonanno M, Vullo D, Dathan N, Leone M, Supuran CT, De Simone G, Monti SM. Biochemical, biophysical and molecular dynamics studies on the proteoglycan-like domain of carbonic anhydrase IX. Cell Mol Life Sci 2018; 75:3283-3296. [PMID: 29564477 PMCID: PMC11105230 DOI: 10.1007/s00018-018-2798-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 12/11/2022]
Abstract
Human carbonic anhydrase IX (hCA IX) is a tumour-associated enzyme present in a limited number of normal tissues, but overexpressed in several malignant human tumours. It is a transmembrane protein, where the extracellular region consists of a greatly investigated catalytic CA domain and a much less investigated proteoglycan-like (PG) domain. Considering its important role in tumour biology, here, we report for the first time the full characterization of the PG domain, providing insights into its structural and functional features. In particular, this domain has been produced at high yields in bacterial cells and characterized by means of biochemical, biophysical and molecular dynamics studies. Results show that it belongs to the family of intrinsically disordered proteins, being globally unfolded with only some local residual polyproline II secondary structure. The observed conformational flexibility may have several important roles in tumour progression, facilitating interactions of hCA IX with partner proteins assisting tumour spreading and progression.
Collapse
Affiliation(s)
- Emma Langella
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy
| | - Martina Buonanno
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy
| | - Daniela Vullo
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, 50019, Florence, Italy
| | - Nina Dathan
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, 50019, Florence, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy.
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy.
| |
Collapse
|
22
|
Curtidor H, Reyes C, Bermúdez A, Vanegas M, Varela Y, Patarroyo ME. Conserved Binding Regions Provide the Clue for Peptide-Based Vaccine Development: A Chemical Perspective. Molecules 2017; 22:molecules22122199. [PMID: 29231862 PMCID: PMC6149789 DOI: 10.3390/molecules22122199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
Synthetic peptides have become invaluable biomedical research and medicinal chemistry tools for studying functional roles, i.e., binding or proteolytic activity, naturally-occurring regions’ immunogenicity in proteins and developing therapeutic agents and vaccines. Synthetic peptides can mimic protein sites; their structure and function can be easily modulated by specific amino acid replacement. They have major advantages, i.e., they are cheap, easily-produced and chemically stable, lack infectious and secondary adverse reactions and can induce immune responses via T- and B-cell epitopes. Our group has previously shown that using synthetic peptides and adopting a functional approach has led to identifying Plasmodium falciparumconserved regions binding to host cells. Conserved high activity binding peptides’ (cHABPs) physicochemical, structural and immunological characteristics have been taken into account for properly modifying and converting them into highly immunogenic, protection-inducing peptides (mHABPs) in the experimental Aotus monkey model. This article describes stereo–electron and topochemical characteristics regarding major histocompatibility complex (MHC)-mHABP-T-cell receptor (TCR) complex formation. Some mHABPs in this complex inducing long-lasting, protective immunity have been named immune protection-inducing protein structures (IMPIPS), forming the subunit components in chemically synthesized vaccines. This manuscript summarizes this particular field and adds our recent findings concerning intramolecular interactions (H-bonds or π-interactions) enabling proper IMPIPS structure as well as the peripheral flanking residues (PFR) to stabilize the MHCII-IMPIPS-TCR interaction, aimed at inducing long-lasting, protective immunological memory.
Collapse
Affiliation(s)
- Hernando Curtidor
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - César Reyes
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
| | - Adriana Bermúdez
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - Magnolia Vanegas
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - Yahson Varela
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- Faculty of Health Sciences, Applied and Environmental Sciences University (UDCA), Bogotá 111321, Colombia.
| | - Manuel E Patarroyo
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- Faculty of Medicine, National University of Colombia, Bogotá 111321, Colombia.
| |
Collapse
|
23
|
Khare H, Dey D, Madhu C, Senapati D, Raghothama S, Govindaraju T, Ramakumar S. Conformational heterogeneity in tails of DNA-binding proteins is augmented by proline containing repeats. MOLECULAR BIOSYSTEMS 2017; 13:2531-2544. [PMID: 29104984 DOI: 10.1039/c7mb00412e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A cationic terminal extension or tail is a common feature of many DNA-binding proteins. We show that a particular type of tail rich in proline, alanine and lysine belongs to the class of 'flexible disorder' and consists of characteristic pentapeptide repeats. Our designed peptides, (AAKKA)1-4 and (PAKKA)1-4, represent the tails of several bacterial DNA-binding proteins. Enhanced conformational sampling of these representative peptides using accelerated molecular dynamic simulations supported by circular dichroism spectroscopy and nuclear magnetic resonance studies demonstrates the role of frequent and interspersed prolines in augmenting conformational heterogeneity of the peptide backbone. Analysis of circular variance of backbone dihedral angles indicates alternating regions of relative rigidity and flexibility along the peptide sequence due to prolines. Preferred placement of lysines in the regions of higher backbone flexibility might improve DNA-binding by conformational selection. Our results could be relevant for rational de novo design of disordered peptides.
Collapse
Affiliation(s)
- Harshavardhan Khare
- Department of Physics, Indian Institute of Science, Bengaluru 560012, India.
| | | | | | | | | | | | | |
Collapse
|