1
|
Pathak P, Zarandi MA, Zhou X, Jayawickramarajah J. Synthesis and Applications of Porphyrin-Biomacromolecule Conjugates. Front Chem 2021; 9:764137. [PMID: 34820357 PMCID: PMC8606752 DOI: 10.3389/fchem.2021.764137] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
With potential applications in materials and especially in light-responsive biomedicine that targets cancer tissue selectively, much research has focused on developing covalent conjugation techniques to tether porphyrinoid units to various biomacromolecules. This review details the key synthetic approaches that have been employed in the recent decades to conjugate porphyrinoids with oligonucleotides and peptides/proteins. In addition, we provide succinct discussions on the subsequent applications of such hybrid systems and also give a brief overview of the rapidly progressing field of porphyrin-antibody conjugates. Since nucleic acid and peptide systems vary in structure, connectivity, functional group availability and placement, as well as stability and solubility, tailored synthetic approaches are needed for conjugating to each of these biomacromolecule types. In terms of tethering to ONs, porphyrins are typically attached by employing bioorthogonal chemistry (e.g., using phosphoramidites) that drive solid-phase ON synthesis or by conducting post-synthesis modifications and subsequent reactions (such as amide couplings, hydrazide-carbonyl reactions, and click chemistry). In contrast, peptides and proteins are typically conjugated to porphyrinoids using their native functional groups, especially the thiol and amine side chains. However, bioorthogonal reactions (e.g., Staudinger ligations, and copper or strain promoted alkyne-azide cycloadditions) that utilize de novo introduced functional groups onto peptides/proteins have seen vigorous development, especially for site-specific peptide-porphyrin tethering. While the ON-porphyrin conjugates have largely been explored for programmed nanostructure self-assembly and artificial light-harvesting applications, there are some reports of ON-porphyrin systems targeting clinically translational applications (e.g., antimicrobial biomaterials and site-specific nucleic acid cleavage). Conjugates of porphyrins with proteinaceous moieties, on the other hand, have been predominantly used for therapeutic and diagnostic applications (especially in photodynamic therapy, photodynamic antimicrobial chemotherapy, and photothermal therapy). The advancement of the field of porphyrinoid-bioconjugation chemistry from basic academic research to more clinically targeted applications require continuous fine-tuning in terms of synthetic strategies and hence there will continue to be much exciting work on porphyrinoid-biomacromolecule conjugation.
Collapse
Affiliation(s)
- Pravin Pathak
- Department of Chemistry, Tulane University, New Orleans, LA, United States
| | | | - Xiao Zhou
- Department of Chemistry, Tulane University, New Orleans, LA, United States
| | - Janarthanan Jayawickramarajah
- Department of Chemistry, Tulane University, New Orleans, LA, United States
- Department of Biochemistry and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
2
|
Lebedeva NS, Gubarev YA, Koifman MO, Koifman OI. The Application of Porphyrins and Their Analogues for Inactivation of Viruses. Molecules 2020; 25:molecules25194368. [PMID: 32977525 PMCID: PMC7583985 DOI: 10.3390/molecules25194368] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023] Open
Abstract
The problem of treating viral infections is extremely relevant due to both the emergence of new viral diseases and to the low effectiveness of existing approaches to the treatment of known viral infections. This review focuses on the application of porphyrin, chlorin, and phthalocyanine series for combating viral infections by chemical and photochemical inactivation methods. The purpose of this review paper is to summarize the main approaches developed to date in the chemical and photodynamic inactivation of human and animal viruses using porphyrins and their analogues and to analyze and discuss the information on viral targets and antiviral activity of porphyrins, chlorins, of their conjugates with organic/inorganic compounds obtained in the last 10–15 years in order to identify the most promising areas.
Collapse
Affiliation(s)
- Natalya Sh. Lebedeva
- Laboratory 1-7. Physical Chemistry of Solutions of Macrocyclic Compounds, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia;
- Correspondence: ; Tel.: +7-4932-33-62-72
| | - Yury A. Gubarev
- Laboratory 1-7. Physical Chemistry of Solutions of Macrocyclic Compounds, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia;
| | - Mikhail O. Koifman
- Department of Chemistry and Technology of Macromolecular Compounds, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; (M.O.K.); (O.I.K.)
| | - Oskar I. Koifman
- Department of Chemistry and Technology of Macromolecular Compounds, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; (M.O.K.); (O.I.K.)
- Laboratory 2-2. New Materials on the Basis of Macrocyclic Compounds, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia
| |
Collapse
|
3
|
Fang W, Peng ZL, Dai YJ, Wang DL, Huang P, Huang HP. (-)-Epigallocatechin-3-gallate encapsulated realgar nanoparticles exhibit enhanced anticancer therapeutic efficacy against acute promyelocytic leukemia. Drug Deliv 2020; 26:1058-1067. [PMID: 31735064 PMCID: PMC6882473 DOI: 10.1080/10717544.2019.1672830] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Realgar and (-)-Epigallocatechin-3-gallate (EGCG) are natural medicines that inhibit cancer cell growth, resulting in inhibition of formation and development of tumors. The anticancer effects of realgar and EGCG were greatly improved following formulation as nanoparticles. EGCG has received increased attention as a drug carrier. The aim of this study was to prepare a new nanomedicine, (EGCG-RNPs), in which encapsulated nano-realgar. EGCG-RNPs were prepared by coprecipitation and characterized by transmission electron microscopy (TEM), differential scanning calorimetry (DSC), particle size and zeta potential, X-ray diffraction, Fourier transform infrared spectroscopy (FTIR) and in vitro release. Furthermore, we evaluated the antiproliferative effects of EGCG-RNPs on HL-60 cells in vitro, antitumor effect by intratumoral injection of EGCG-RNPs into solid tumors derived from APL HL-60 cells in vivo. Possible mechanisms were evaluated using uptake and efflux experiments in HL-60 cells. The results showed that the average particle size and zeta potentials of EGCG-RNPs was 200.3 ± 1.23 nm and −46.8 ± 1.31 mV. Controlled release of EGCG-RNPs was sustained and continued up to 72 h in vitro. Compared with nano-realgar and EGCG + RNPs (EGCG and nano-realgar physical mixing), EGCG-RNPs significantly inhibited growth of HL-60 cells. In a solid tumor model, EGCG-RNPs decreased tumor volumes, with an inhibitory rate of 60.18% at a dose of 70 mg · kg−1. The mechanisms of antitumor improvement may correlate with the increased uptake of realgar and prolonged the retention time of realgar in HL-60 cells due to EGCG as a carrier. EGCG-RNPs could enhance anticancer therapeutic efficacy for acute promyelocytic leukemia.
Collapse
Affiliation(s)
- Wei Fang
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zhao Liang Peng
- Chinese Academy of Sciences Shanghai Institute of Materia Medica, ShangHai, China
| | - Ya Ji Dai
- Anhui Second People's Hospital, HeFei, Anhui, China
| | - Dian Lei Wang
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| | - Peng Huang
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - He Ping Huang
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
4
|
Melnyk T, Đorđević S, Conejos-Sánchez I, Vicent MJ. Therapeutic potential of polypeptide-based conjugates: Rational design and analytical tools that can boost clinical translation. Adv Drug Deliv Rev 2020; 160:136-169. [PMID: 33091502 DOI: 10.1016/j.addr.2020.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
The clinical success of polypeptides as polymeric drugs, covered by the umbrella term "polymer therapeutics," combined with related scientific and technological breakthroughs, explain their exponential growth in the development of polypeptide-drug conjugates as therapeutic agents. A deeper understanding of the biology at relevant pathological sites and the critical biological barriers faced, combined with advances regarding controlled polymerization techniques, material bioresponsiveness, analytical methods, and scale up-manufacture processes, have fostered the development of these nature-mimicking entities. Now, engineered polypeptides have the potential to combat current challenges in the advanced drug delivery field. In this review, we will discuss examples of polypeptide-drug conjugates as single or combination therapies in both preclinical and clinical studies as therapeutics and molecular imaging tools. Importantly, we will critically discuss relevant examples to highlight those parameters relevant to their rational design, such as linking chemistry, the analytical strategies employed, and their physicochemical and biological characterization, that will foster their rapid clinical translation.
Collapse
Affiliation(s)
- Tetiana Melnyk
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Snežana Đorđević
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
5
|
Kiss K, Biri-Kovács B, Szabó R, Ranđelović I, Enyedi KN, Schlosser G, Orosz Á, Kapuvári B, Tóvári J, Mező G. Sequence modification of heptapeptide selected by phage display as homing device for HT-29 colon cancer cells to improve the anti-tumour activity of drug delivery systems. Eur J Med Chem 2019; 176:105-116. [PMID: 31100648 DOI: 10.1016/j.ejmech.2019.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/28/2019] [Accepted: 05/06/2019] [Indexed: 11/16/2022]
Abstract
Development of peptide-based conjugates for targeted tumour therapy is a current research topic providing new possibilities in cancer treatment. In this study, VHLGYAT heptapeptide selected by phage display technique for HT-29 human colon cancer was investigated as homing peptide for drug delivery. Daunomycin was conjugated to the N-terminus of the peptide directly or through Cathepsin B cleavable spacers. Conjugates showed moderate in vitro cytostatic effect. Therefore, sequence modifications were performed by Ala-scan and positional scanning resulting in conjugates with much higher bioactivity. Conjugates in which Gly was replaced by amino acids with bulky apolaric side chains provided the best efficacy. The influence of the cellular uptake, stability and drug release on the anti-tumour activity was investigated. It was found that mainly the difference in the cellular uptake of the conjugates generated the distinct effect on cell viability. One of the most efficient conjugate Dau = Aoa-LRRY-VHLFYAT-NH2 showed tumour growth inhibition on orthotopically developed HT-29 colon cancer in mice with negligible toxic side effect compared to the free drug. We also indicate that this sequence is not specific to HT-29 cells, but it has a remarkable effect on many other cancer cells. Nevertheless, the Phe-containing conjugate was more active in all cases compared to the conjugate with the parent sequence. The literature data suggested that this sequence is highly overlapped with peptides that recognize Hsp70 membrane bound protein overexpressed in many types of tumours.
Collapse
Affiliation(s)
- Krisztina Kiss
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Beáta Biri-Kovács
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Rita Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology, National Institute of Oncology, 1122, Budapest, Hungary
| | - Kata Nóra Enyedi
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Ádám Orosz
- Institute of Biophysics and Radiation Biology, Semmelweis University, 1444, Budapest, Hungary
| | - Bence Kapuvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122, Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122, Budapest, Hungary
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary.
| |
Collapse
|
6
|
Stenström P, Manzanares D, Zhang Y, Ceña V, Malkoch M. Evaluation of Amino-Functional Polyester Dendrimers Based on Bis-MPA as Nonviral Vectors for siRNA Delivery. Molecules 2018; 23:E2028. [PMID: 30110914 PMCID: PMC6222295 DOI: 10.3390/molecules23082028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 11/23/2022] Open
Abstract
Herein, we present the first evaluation of cationic dendrimers based on 2,2-bis(methylol)propionic acid (bis-MPA) as nonviral vectors for transfection of short interfering RNA (siRNA) in cell cultures. The study encompassed dendrimers of generation one to four (G1⁻G4), modified to bear 6⁻48 amino end-groups, where the G2⁻G4 proved to be capable of siRNA complexation and protection against RNase-mediated degradation. The dendrimers were nontoxic to astrocytes, glioma (C6), and glioblastoma (U87), while G3 and G4 exhibited concentration dependent toxicity towards primary neurons. The G2 showed no toxicity to primary neurons at any of the tested concentrations. Fluorescence microscopy experiments suggested that the dendrimers are highly efficient at endo-lysosomal escape since fluorescently labeled dendrimers were localized specifically in mitochondria, and diffuse cytosolic distribution of fluorescent siRNA complexed by dendrimers was observed. This is a desired feature for intracellular drug delivery, since the endocytic pathway otherwise transfers the drugs into lysosomes where they can be degraded without reaching their intended target. siRNA-transfection was successful in C6 and U87 cell lines using the G3 and G4 dendrimers followed by a decrease of approximately 20% of target protein p42-MAPK expression.
Collapse
Affiliation(s)
- Patrik Stenström
- Fiber and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | - Dario Manzanares
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain.
- CIBERNED, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Yuning Zhang
- Fiber and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | - Valentin Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain.
- CIBERNED, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Michael Malkoch
- Fiber and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| |
Collapse
|
7
|
Affiliation(s)
| | - Marina Gobbo
- Department of Chemical SciencesUniversity of PadovaPadova35131 Italy
- Institute of Biomolecular Chemistry of CNR, Padova UnitPadova35131 Italy
| |
Collapse
|
8
|
Ohashi N, Nomura A, Kodera M, Hitomi Y. Structurally Simple Cell-permeable Porphyrins: Efficient Cellular Uptake and Phototoxicity of Porphyrins with Four Peripheral Primary-amine-terminated Oligo(ethylene oxide) Chains. CHEM LETT 2017. [DOI: 10.1246/cl.170821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Natsumi Ohashi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321
| | - Akiko Nomura
- Center for Nanoscience Research, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321
| | - Masahito Kodera
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321
- Center for Nanoscience Research, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321
| | - Yutaka Hitomi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321
- Center for Nanoscience Research, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321
| |
Collapse
|