1
|
Buccarelli M, Castellani G, Fiorentino V, Pizzimenti C, Beninati S, Ricci-Vitiani L, Scattoni ML, Mischiati C, Facchiano F, Tabolacci C. Biological Implications and Functional Significance of Transglutaminase Type 2 in Nervous System Tumors. Cells 2024; 13:667. [PMID: 38667282 PMCID: PMC11048792 DOI: 10.3390/cells13080667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Transglutaminase type 2 (TG2) is the most ubiquitously expressed member of the transglutaminase family. TG2 catalyzes the transamidation reaction leading to several protein post-translational modifications and it is also implicated in signal transduction thanks to its GTP binding/hydrolyzing activity. In the nervous system, TG2 regulates multiple physiological processes, such as development, neuronal cell death and differentiation, and synaptic plasticity. Given its different enzymatic activities, aberrant expression or activity of TG2 can contribute to tumorigenesis, including in peripheral and central nervous system tumors. Indeed, TG2 dysregulation has been reported in meningiomas, medulloblastomas, neuroblastomas, glioblastomas, and other adult-type diffuse gliomas. The aim of this review is to provide an overview of the biological and functional relevance of TG2 in the pathogenesis of nervous system tumors, highlighting its involvement in survival, tumor inflammation, differentiation, and in the resistance to standard therapies.
Collapse
Affiliation(s)
- Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy;
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Claudio Tabolacci
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
2
|
González-Moro I, Rojas-Márquez H, Sebastian-delaCruz M, Mentxaka-Salgado J, Olazagoitia-Garmendia A, Mendoza LM, Lluch A, Fantuzzi F, Lambert C, Ares Blanco J, Marselli L, Marchetti P, Cnop M, Delgado E, Fernández-Real JM, Ortega FJ, Castellanos-Rubio A, Santin I. A long non-coding RNA that harbors a SNP associated with type 2 diabetes regulates the expression of TGM2 gene in pancreatic beta cells. Front Endocrinol (Lausanne) 2023; 14:1101934. [PMID: 36824360 PMCID: PMC9941620 DOI: 10.3389/fendo.2023.1101934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
INTRODUCTION Most of the disease-associated single nucleotide polymorphisms (SNPs) lie in non- coding regions of the human genome. Many of these variants have been predicted to impact the expression and function of long non-coding RNAs (lncRNA), but the contribution of these molecules to the development of complex diseases remains to be clarified. METHODS Here, we performed a genetic association study between a SNP located in a lncRNA known as LncTGM2 and the risk of developing type 2 diabetes (T2D), and analyzed its implication in disease pathogenesis at pancreatic beta cell level. Genetic association study was performed on human samples linking the rs2076380 polymorphism with T2D and glycemic traits. The pancreatic beta cell line EndoC-bH1 was employed for functional studies based on LncTGM2 silencing and overexpression experiments. Human pancreatic islets were used for eQTL analysis. RESULTS We have identified a genetic association between LncTGM2 and T2D risk. Functional characterization of the LncTGM2 revealed its implication in the transcriptional regulation of TGM2, coding for a transglutaminase. The T2Dassociated risk allele in LncTGM2 disrupts the secondary structure of this lncRNA, affecting its stability and the expression of TGM2 in pancreatic beta cells. Diminished LncTGM2 in human beta cells impairs glucose-stimulated insulin release. CONCLUSIONS These findings provide novel information on the molecular mechanisms by which T2D-associated SNPs in lncRNAs may contribute to disease, paving the way for the development of new therapies based on the modulation of lncRNAs.
Collapse
Affiliation(s)
- Itziar González-Moro
- Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Henar Rojas-Márquez
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Spain
| | - Maialen Sebastian-delaCruz
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Spain
| | - Jon Mentxaka-Salgado
- Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Olazagoitia-Garmendia
- Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Spain
| | - Luis Manuel Mendoza
- Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Aina Lluch
- Institut d’Investigació Biomèdica de Girona, Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Federica Fantuzzi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Carmen Lambert
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- University of Barcelona, Barcelona, Spain
| | - Jessica Ares Blanco
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- Endocrinology and Nutrition Department, Central University Hospital of Asturias (HUCA), Oviedo, Spain
- Department of Medicine, University of Oviedo, Oviedo, Spain
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Cisanello University Hospital, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Cisanello University Hospital, Pisa, Italy
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Elías Delgado
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- Endocrinology and Nutrition Department, Central University Hospital of Asturias (HUCA), Oviedo, Spain
- Department of Medicine, University of Oviedo, Oviedo, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
| | - José Manuel Fernández-Real
- Institut d’Investigació Biomèdica de Girona, Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Oviedo, Spain
| | - Francisco José Ortega
- Institut d’Investigació Biomèdica de Girona, Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ainara Castellanos-Rubio
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Spain
- Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre, Madrid, Spain
- Ikerbasque - Basque Foundation for Science, Bilbao, Spain
- *Correspondence: Izortze Santin, ; Ainara Castellanos-Rubio,
| | - Izortze Santin
- Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre, Madrid, Spain
- *Correspondence: Izortze Santin, ; Ainara Castellanos-Rubio,
| |
Collapse
|
3
|
Aguiari G, Crudele F, Taccioli C, Minotti L, Corrà F, Keillor JW, Grassilli S, Cervellati C, Volinia S, Bergamini CM, Bianchi N. Dysregulation of Transglutaminase type 2 through GATA3 defines aggressiveness and Doxorubicin sensitivity in breast cancer. Int J Biol Sci 2022; 18:1-14. [PMID: 34975314 PMCID: PMC8692156 DOI: 10.7150/ijbs.64167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/30/2021] [Indexed: 11/05/2022] Open
Abstract
The role of transglutaminase type 2 in cell physiology is related to protein transamidation and signal transduction (affecting extracellular, intracellular and nuclear processes) aided by the expression of truncated isoforms and of two lncRNAs with regulatory functions. In breast cancer TG2 is associated with disease progression supporting motility, epithelial-mesenchymal transition, invasion and drug resistance. The aim of his work is to clarify these issues by emphasizing the interconnections among TGM2 variants and transcription factors associated with an aggressive phenotype, in which the truncated TGH isoform correlates with malignancy. TGM2 transcripts are upregulated by several drugs in MCF-7, but only Doxorubicin is effective in MDA-MB-231 cells. These differences reflect the expression of GATA3, as demonstrated by silencing, suggesting a link between this transcription factor and gene dysregulation. Of note, NC9, an irreversible inhibitor of enzymatic TG2 activities, emerges to control NF-ĸB and apoptosis in breast cancer cell lines, showing potential for combination therapies with Doxorubicin.
Collapse
Affiliation(s)
- Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Francesca Crudele
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Padua, Italy
| | - Linda Minotti
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Fabio Corrà
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Advanced Therapy Technologies (LTTA), Via Fossato di Mortara 70, 44124 Ferrara FE, Italy
| | - Carlo Cervellati
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Advanced Therapy Technologies (LTTA), Via Fossato di Mortara 70, 44124 Ferrara FE, Italy
| | - Carlo M. Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Inhibition of the lncRNA Coded within Transglutaminase 2 Gene Impacts Several Relevant Networks in MCF-7 Breast Cancer Cells. Noncoding RNA 2021; 7:ncrna7030049. [PMID: 34449674 PMCID: PMC8395837 DOI: 10.3390/ncrna7030049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs are nucleotide molecules that regulate transcription in numerous cellular processes and are related to the occurrence of many diseases, including cancer. In this regard, we recently discovered a polyadenylated long non-coding RNA (named TG2-lncRNA) encoded within the first intron of the Transglutaminase type 2 gene (TGM2), which is related to tumour proliferation in human cancer cell lines. To better characterize this new biological player, we investigated the effects of its suppression in MCF-7 breast cancer cells, using siRNA treatment and RNA-sequencing. In this way, we found modifications in several networks associated to biological functions relevant for tumorigenesis (apoptosis, chronic inflammation, angiogenesis, immunomodulation, cell mobility, and epithelial–mesenchymal transition) that were originally attributed only to Transglutaminase type 2 protein but that could be regulated also by TG2-lncRNA. Moreover, our experiments strongly suggest the ability of TG2-lncRNA to directly interact with important transcription factors, such as RXRα and TP53, paving the way for several regulatory loops that can potentially influence the phenotypic behaviour of MCF-7 cells. These considerations imply the need to further investigate the relative relevance of the TG2 protein itself and/or other gene products as key regulators in the organization of breast cancer program.
Collapse
|
5
|
Franzese O, Minotti L, Aguiari G, Corrà F, Cervellati C, Ferrari C, Volinia S, Bergamini CM, Bianchi N. Involvement of non-coding RNAs and transcription factors in the induction of Transglutaminase isoforms by ATRA. Amino Acids 2019; 51:1273-1288. [PMID: 31440819 DOI: 10.1007/s00726-019-02766-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/24/2019] [Indexed: 01/02/2023]
Abstract
The multifunctional protein Transglutaminase type 2, is associated with cancer epithelial mesenchymal transition, invasiveness, stemness and drugs resistance. Several variant isoforms and non-coding RNAs are present in cancer and this report explored the expression of these transcripts of the TGM2 gene in cancer cell lines after induction with all-trans retinoic acid. The expression of truncated variants along with two long non-coding RNAs, was demonstrated. One of these is coded from the first intron and the Last Exon Variant is constituted by a sequence corresponding to the last three exons and the 3'UTR. Analysis of ChIP-seq data, from ENCODE project, highlighted factors interacting with intronic sequences, which could interfere with the progression of RNApol II at checkpoints, during the elongation process. Some relevant transcription factors, bound in an ATRA-dependent way, were found by RNA immunoprecipitation, notably GATA3 mainly enriched to Last Exon Variant non-coding RNA. The involvement of NMD in the regulation of the ratio among these transcripts was observed, as the prevalent recovering of Last Exon Variant to phUPF1-complexes, with decrease of the binding towards other selective targets. This study contributes to identify molecular mechanisms regulating the ratio among the variants and improves the knowledge about regulatory roles of the non-coding RNAs of the TGM2 gene.
Collapse
Affiliation(s)
- Ornella Franzese
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Gianluca Aguiari
- Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy
| | - Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carlo Cervellati
- Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy
| | - Carlo Ferrari
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carlo M Bergamini
- Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy.
| | - Nicoletta Bianchi
- Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy.
| |
Collapse
|
6
|
Spotlight on the transglutaminase 2 gene: a focus on genomic and transcriptional aspects. Biochem J 2018; 475:1643-1667. [PMID: 29764956 DOI: 10.1042/bcj20170601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 01/16/2023]
Abstract
The type 2 isoenzyme is the most widely expressed transglutaminase in mammals displaying several intra- and extracellular activities depending on its location (protein modification, modulation of gene expression, membrane signalling and stabilization of cellular interactions with the extracellular matrix) in relation to cell death, survival and differentiation. In contrast with the appreciable knowledge about the regulation of the enzymatic activities, much less is known concerning its inducible expression, which is altered in inflammatory and neoplastic diseases. In this context, we first summarize the gene's basic features including single-nucleotide polymorphism characterization, epigenetic DNA methylation and identification of regulatory regions and of transcription factor-binding sites at the gene promoter, which could concur to direct gene expression. Further aspects related to alternative splicing events and to ncRNAs (microRNAs and lncRNAs) are involved in the modulation of its expression. Notably, this important gene displays transcriptional variants relevant for the protein's function with the occurrence of at least seven transcripts which support the synthesis of five isoforms with modified catalytic activities. The different expression of the TG2 (type 2 transglutaminase) variants might be useful for dictating the multiple biological features of the protein and their alterations in pathology, as well as from a therapeutic perspective.
Collapse
|
7
|
Tsymbal DO, Minchenko DO, Hnatiuk OS, Luzina OY, Minchenko OH. Effect of Hypoxia on the Expression of a Subset of Proliferation Related Genes in IRE1 Knockdown U87 Glioma Cells. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/abc.2017.76014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|