1
|
Vezenkov LT, Danalev DL, Iwanov I, Lozanov V, Atanasov A, Todorova R, Vassilev N, Karadjova V. Synthesis and biological study of new galanthamine-peptide derivatives designed for prevention and treatment of Alzheimer 's disease. Amino Acids 2022; 54:897-910. [PMID: 35562605 DOI: 10.1007/s00726-022-03167-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/23/2022] [Indexed: 11/29/2022]
Abstract
The Alzheimer's disease leads to neurodegenerative processes and affecting negatively million people worldwide. The treatment of the disease is still difficult and incomplete in practice. Galanthamine is one of the most commonly used drugs against the illness. The main aim of this work is design and synthesis of new derivatives of galanthamine comprising peptide moiety as well as study of their β-secretase inhibitory activity and the anti-aggregating effect. All new derivatives of galanthamine containing analogues of Leu-Val-Phe-Phe (Aβ17-Aβ20) were synthesized in solution using fragment and consecutive condensation approaches. The new derivatives were characterized by melting points, NMR, and HPLC/MS. They were tested in vitro for β-secretase inhibition activity by means of fluorescent method and were investigated in vitro for anti-aggregation activity on sheep platelet-rich plasma. Although the new compounds do not contain a structural element responsible for the β-secretase inhibition, five of them show high or good β-secretase inhibitory activity between 19.98 and 51.19% with IC50 between 1.95 and 5.26 nM. Four of the new molecules were able to inhibit platelet aggregation between 55.0 and 90.0% with IC50 between 0.69 and 1.36 µM. Four of the compounds were able to inhibit platelet aggregation and two of them have high anti-aggregating effects.
Collapse
Affiliation(s)
| | - Dancho L Danalev
- University of Chemical Technology and Metallurgy, Sofia, 1756, Bulgaria.
| | - Iwan Iwanov
- University of Chemical Technology and Metallurgy, Sofia, 1756, Bulgaria
| | - Valentin Lozanov
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, Sofia, 1000, Bulgaria
| | - Atanas Atanasov
- Medical Faculty, Trakia University, Stara Zagora, 6000, Bulgaria
| | - Rumyana Todorova
- Medical Faculty, Trakia University, Stara Zagora, 6000, Bulgaria
| | - Nikolay Vassilev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | | |
Collapse
|
2
|
Zhang R, Guo S, Deng P, Wang Y, Dai A, Wu J. Novel Ferulic Amide Ac6c Derivatives: Design, Synthesis, and Their Antipest Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10082-10092. [PMID: 34432441 DOI: 10.1021/acs.jafc.1c03892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Thirty-eight novel ferulic amide 1-aminocyclohexane carboxylic acid (Ac6c) derivatives D1-D19 and E1-E19 were designed and synthesized, and their antibacterial, antifungal, and insecticidal activities were tested. Most of the synthesized compounds displayed excellent activity againstXanthomonas oryzae pv. oryzae (Xoo), with EC50 values ranging from 11.6 to 83.1 μg/mL better than that of commercial bismerthiazol (BMT, EC50 = 84.3 μg/mL), as well as much better performance compared to that of thiediazole copper (TDC, EC50 = 137.8 μg/mL). D6 (EC50 = 17.3 μg/mL), D19 (EC50 = 29.4 μg/mL), E3 (EC50 = 29.7 μg/mL), E9 (EC50 = 27.0 μg/mL), E10 (EC50 = 18.6 μg/mL), and E18 (EC50 = 20.8 μg/mL) showed much higher activity on Xanthomonas oryzae pv. oryzicola compared with BMT (EC50 = 80.1 μg/mL) and TDC (EC50 = 124.7 μg/mL). In relation to controlling the fungus, Rhizoctonia solani, E1, E10, and E13 had much lower EC50 values of 0.005, 0.140, and 0.159 μg/mL compared to hymexazol at 74.8 μg/mL. Further in vivo experiments demonstrated that E6 and E12 controlled rice bacterial leaf blight disease better than BMT and TDC did. Scanning electron microscopy (SEM) studies revealed that E12 induced the Xoo cell membrane collapse. Moreover, D13 (73.7%), E5 (80.6%), and E10 (73.4%) also showed moderate activity against Plutella xylostella. These results indicated that the synthesized ferulic amide Ac6c derivatives showed promise as candidates for treating crop diseases.
Collapse
Affiliation(s)
- Renfeng Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shengxin Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Peng Deng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ya Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ali Dai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
3
|
Danalev D, Borisova D, Yaneva S, Georgieva M, Balacheva A, Dzimbova T, Iliev I, Pajpanova T, Zaharieva Z, Givechev I, Naydenova E. Synthesis, in vitro biological activity, hydrolytic stability and docking of new analogs of BIM-23052 containing halogenated amino acids. Amino Acids 2020; 52:1581-1592. [PMID: 33215308 DOI: 10.1007/s00726-020-02915-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/06/2020] [Indexed: 11/25/2022]
Abstract
One of the potent somatostatin analogs, BIM-23052 (DC-23-99) D-Phe-Phe-Phe-D-Trp-Lys-Thr-Phe-Thr-NH2, has established in vitro growth hormone inhibitory activity in nM concentrations. It is also characterized by high affinity to some somatostatin receptors which are largely distributed in the cell membranes of many tumor cells. Herein, we report the synthesis of a series of analogs of BIM-23052 containing halogenated Phe residues using standard solid-phase peptide method Fmoc/OtBu-strategy. The cytotoxic effects of the compounds were tested in vitro against two human tumor cell lines-breast cancer cell line and hepatocellular cancer cell line, as well as on human non-tumorigenic epithelial cell line. Analogs containing fluoro-phenylalanines are cytotoxic in μM range, as the analog containing Phe (2-F) showed better selectivity against human hepatocellular cancer cell line. The presented study also reveals that accumulation of halogenated Phe residues does not increase the cytotoxicity according to tested cell lines. The calculated selective index reveals different mechanisms of antitumor activity of the parent compound BIM-23052 and target halogenated analogs for examined breast tumor cell lines. All peptides tested have high antitumor activity against the HepG2 cell line (IC50 ≈ 100 μM and SI > 5) compared to breast cells. This is probably due to the high permeability of the cell membrane and the higher metabolic activity of hepatocytes. In silico docking studies confirmed that all obtained analogs bind well with the somatostatin receptors with preference to ssrt3 and ssrt5. All target compounds showed high hydrolytic stability at acid and neutral pH, which mimic physiological condition in stomach and human plasma.
Collapse
Affiliation(s)
- Dancho Danalev
- Biotechnology Department, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Desislava Borisova
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Spaska Yaneva
- Department of Fundamental of Chemical Technology, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Maya Georgieva
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anelia Balacheva
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tatyana Dzimbova
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Sofia, Bulgaria.,South-West University "Neofit Rilski", Blagoevgrad, Bulgaria
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 25, 1113, Sofia, Bulgaria
| | - Tamara Pajpanova
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Zdravka Zaharieva
- Biotechnology Department, University of Chemical Technology and Metallurgy, Sofia, Bulgaria.,Testing Center Global Test Ltd, 31 Krushovski vrah Street, Sofia, Bulgaria
| | - Ivan Givechev
- Biotechnology Department, University of Chemical Technology and Metallurgy, Sofia, Bulgaria.,Testing Center Global Test Ltd, 31 Krushovski vrah Street, Sofia, Bulgaria
| | - Emilia Naydenova
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria.
| |
Collapse
|