1
|
Zhang W, Shi J, Li Y, Ma Y, Khanzada AK, Al-Hazmi HE, Xu X, Li X, Hassan GK, Xue G, Makinia J. A novel approach to enhance high optically active L-lactate production from food waste by landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122497. [PMID: 39278020 DOI: 10.1016/j.jenvman.2024.122497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The recycling of food waste (FW) through anaerobic fermentation into lactic acid (LA), with two isomers L-LA and D-LA, aligns with the principles of a bio-based circular economy. However, FW fermentation is often limited by competing pathways, acidification inhibition, and trace metals deficiency. This study investigates the introduction of landfill leachate, containing buffering agents (ammonia) and trace metals, into FW fermentation. Various dosages of landfill leachate, ranging from 90 (LN-90) to 450 mg/L (LN-450) based on inclusive ammonia calculation, were employed. Results showed that LA production peaked at 43.65 ± 0.57 g COD/L in LN-180 on day 6, with a high optical activity of L-LA at 92.40 ± 1.15 %. Fermentation pathway analysis revealed that landfill leachate amendment enhances hydrolysis (as evidenced by increased activity of amylase, α-glucosidase, and protease) and glycolysis (resulting in enhanced utilization of carbohydrates and glucose). The inclusive ammonia in leachate plays a crucial role as a buffer, maintaining optimal pH conditions (5-7), thereby reducing volatile fatty acid production and thus intensifying LA orientations. The increased activity of L-lactate dehydrogenase (L-LA generation) and decreased NAD-independent lactate dehydrogenase (LA consumption) in properly dosed leachate further explained the high accumulation of L-LA. Dominance of lactic acid bacteria, including Streptococcus, Enterococcus, Klebsiella, Bifidobacterium, Bavariicoccus, and Lacticaseibacillus, accounted for 91.08% (LN-90), while inhibitory effects were observed in LN-450 (4.45%). Functional gene analysis further supported the enhanced glycolysis, L-lactate dehydrogenase, and nitrogen assimilation. Finally, a network analysis indicates a beneficial effect on the genus Enterococcus and Klebsiella by landfill leachate addition. This study demonstrates the efficiency of utilizing landfill leachate to enhance LA recycling from FW fermentation, aligning with the concept of circular economy by transforming waste into valuable resources.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Shanghai University of Engineering Science, School of Chemistry and Chemical Engineering, Shanghai, 201620, China
| | - Jiaxin Shi
- Shanghai University of Engineering Science, School of Chemistry and Chemical Engineering, Shanghai, 201620, China
| | - Yue Li
- Shanghai University of Engineering Science, School of Chemistry and Chemical Engineering, Shanghai, 201620, China
| | - Yonghong Ma
- State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Aisha Khan Khanzada
- Eko-Tech Center, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland; Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Hussein E Al-Hazmi
- Eko-Tech Center, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland; Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland; BioCo Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Xianbao Xu
- Eko-Tech Center, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland; Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland.
| | - Xiang Li
- State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
| | - Gamal Kamel Hassan
- Water Pollution Research Department, National Research Centre, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Gang Xue
- State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Jacek Makinia
- Eko-Tech Center, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland; Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland
| |
Collapse
|
2
|
Böer T, Schüler MA, Lüschen A, Eysell L, Dröge J, Heinemann M, Engelhardt L, Basen M, Daniel R, Poehlein A. Isolation and characterization of novel acetogenic strains of the genera Terrisporobacter and Acetoanaerobium. Front Microbiol 2024; 15:1426882. [PMID: 39021630 PMCID: PMC11253131 DOI: 10.3389/fmicb.2024.1426882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Due to their metabolic versatility in substrate utilization, acetogenic bacteria represent industrially significant production platforms for biotechnological applications such as syngas fermentation, microbial electrosynthesis or transformation of one-carbon substrates. However, acetogenic strains from the genera Terrisporobacter and Acetoanaerobium remained poorly investigated for biotechnological applications. We report the isolation and characterization of four acetogenic Terrisporobacter strains and one Acetoanaerobium strain. All Terrisporobacter isolates showed a characteristic growth pattern under a H2 + CO2 atmosphere. An initial heterotrophic growth phase was followed by a stationary growth phase, where continuous acetate production was indicative of H2-dependent acetogenesis. One of the novel Terrisporobacter isolates obtained from compost (strain COMT) additionally produced ethanol besides acetate in the stationary growth phase in H2-supplemented cultures. Genomic and physiological characterizations showed that strain COMT represented a novel Terrisporobacter species and the name Terrisporobacter vanillatitrophus is proposed (=DSM 116160T = CCOS 2104T). Phylogenomic analysis of the novel isolates and reference strains implied the reclassification of the T. petrolearius/T. hibernicus phylogenomic cluster to the species T. petrolearius and of the A. noterae/A. sticklandii phylogenomic cluster to the species A. sticklandii. Furthermore, we provide first insights into active prophages of acetogens from the genera Terrisporobacter and Acetoanaerobium.
Collapse
Affiliation(s)
- Tim Böer
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Miriam Antonia Schüler
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Alina Lüschen
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Lena Eysell
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Jannina Dröge
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Melanie Heinemann
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Lisa Engelhardt
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Mirko Basen
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Comparative genomic analysis of hyper-ammonia producing Acetoanaerobium sticklandii DSM 519 with purinolytic Gottschalkia acidurici 9a and pathogenic Peptoclostridium difficile 630. Genomics 2021; 113:4196-4205. [PMID: 34780936 DOI: 10.1016/j.ygeno.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/18/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Acetoanaerobium sticklandii DSM519 (CST) is a hype-ammonia producing non-pathogenic anaerobe that can use amino acids as important carbon and energy sources through the Stickland reactions. Biochemical aspects of this organism have been extensively studied, but systematic studies addressing its metabolic discrepancy remain scant. In this perspective, we have intensively analyzed its genomic and metabolic characteristics to comprehend the evolutionary conservation of amino acid catabolism by a comparative genomic approach. The whole-genome data indicated that CST has shown a phylogenomic similarity with hyper-ammonia producing, purinolytic, and proteolytic pathogenic Clostridia. CST has shown to common genomic context sharing across the purinolytic Gottschalkia acidurici 9a and pathogenic Peptoclostridium difficile 630. Genome syntenic analysis described that syntenic orthologs might be originated from the recent ancestor at a slow evolution rate and syntenic-out paralogs evolved from either CDF or CAC via α-event and β-event. Collinearity of either gene orders or gene families was adjusted with syntenic out-paralogs across these genomes. The genome-wide metabolic analysis predicted 11 unique putative metabolic subsystems from the CST genome for amino acid catabolism and hydrogen production. The in silico analysis of our study revealed that a characteristic system for amino acid catabolism-directed biofuel synthesis might have slowly evolved and established as a core genomic content of CST.
Collapse
|
4
|
Matsuda S, Ohtsuki T. Effective methane production from the Japanese weed Gyougi-shiba (Cynodon dactylon) is accomplished by colocalization of microbial communities that assimilate water-soluble and -insoluble fractions. FEMS Microbiol Lett 2021; 368:6136275. [PMID: 33587116 PMCID: PMC7939696 DOI: 10.1093/femsle/fnab015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/12/2021] [Indexed: 11/12/2022] Open
Abstract
Weed, an abundant biomass, is considered unsuitable as a raw material for methane production. There are few reports on the anaerobic digestion of weeds without the addition of other organic wastes. To solve this problem, a methane-producing microbial community with weed as a sole feedstock was established. This study mainly focused on the degree of contribution between water-soluble and -insoluble fractions of the weed to methane production; thus, methane production from both fractions was tested separately. Methane production after 80-day batch cultures with whole weed, water-soluble and water-insoluble fractions was 184.5, 96.8 and 26.5 NmL g-1 dry matter (DM), respectively. The results of 16S rRNA gene amplicon sequence analysis revealed that Proteiniphilum saccharofermentans and several Methanobacterium species commonly dominated all cultures, whereas the population dynamics of minor species differed in every culture. Moreover, the remixed culture of microbial communities adapted to water-soluble and -insoluble fractions recovered methane production (252.4 NmL g-1 DM). Based on these results, it can be strongly inferred that colocalizing the minor species in water-soluble and -insoluble fractions is important for effective methane production.
Collapse
Affiliation(s)
- Shuhei Matsuda
- Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, Kofu 400-8510, Yamanashi, Japan
| | - Takashi Ohtsuki
- Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, Kofu 400-8510, Yamanashi, Japan
| |
Collapse
|
5
|
Sangavai C, Chellapandi P. Growth-associated catabolic potential of Acetoanaerobium sticklandii DSM 519 on gelatin and amino acids. J Basic Microbiol 2020; 60:882-893. [PMID: 32812241 DOI: 10.1002/jobm.202000292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 11/07/2022]
Abstract
Acetoanaerobium sticklandii DSM 519 is a hyperammonia-producing anaerobe that catabolizes proteins and amino acids into organic solvents and volatile acids via the Stickland reactions. However, the specific growth rate and metabolic capability of this organism on proteins and amino acids are not yet known. Therefore, the present study was intended to evaluate its specific growth rate and metabolic potential on gelatin and amino acids in the experimental media. We carried out metabolic assay experiments to calculate its ability to utilize pure gelatin, single amino acids, and amino acid pairs at different growth phases. The results of this study show that complete assimilation of gelatin was achieved by its log-phase culture. The subsequent fermentation of amino acids was much faster than gelatin hydrolysis. The rate of gelatin degradation was associated with the growth and catabolic rates of this organism. Many amino acids were not assimilated completely for its growth and energy conservation. A log-phase culture of this organism preferably utilized l-cysteine, l-arginine, and l-serine, and released more fraction of ammonia. As shown by our analysis, the catabolic rates of these amino acids were determined by the rates of respective enzymes involved in amino acid catabolic pathways and feedback repression of ammonia. The growth kinetic data indicated that at the initial growth stage, a metabolic shift in its solventogenesis and acidogenesis phases was associated with catabolism of certain amino acids. Thus, the results of this study provide a new insight to exploit its log-phase culture as a starter for the production of biofuel components from gelatin processing industries.
Collapse
Affiliation(s)
- Chinnadurai Sangavai
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Paulchamy Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|