1
|
Park SY, Karantenislis G, Rosen HT, Sun H. Effects of energy drinks on myogenic differentiation of murine C2C12 myoblasts. Sci Rep 2023; 13:8481. [PMID: 37231025 PMCID: PMC10213057 DOI: 10.1038/s41598-023-35338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Energy drinks, often advertised as dietary supplements that enhance physical and mental performance, have gained increasing popularity among adolescents and athletes. Several studies on individual ingredients such as caffeine or taurine have reported either adverse or favorable influences on myogenic differentiation, a key process in muscle regeneration to repair microtears after an intense workout session. However, the impact of different energy drinks with various formulas on muscle differentiation has never been reported. This study aims to examine the in vitro effects of various energy drink brands on myogenic differentiation. Murine C2C12 myoblast cells were induced to differentiate into myotubes in the presence of one of eight energy drinks at varying dilutions. A dose-dependent inhibition of myotube formation was observed for all energy drinks, supported by reduced percentage of MHC-positive nuclei and fusion index. Moreover, expression of myogenic regulatory factor MyoG and differentiation marker MCK were also decreased. Furthermore, given the variation in formulas of different energy drinks, there were remarkable differences in the differentiation and fusion of myotubes between energy drinks. This is the first study to investigate the impact of various energy drinks on myogenic differentiation and our results suggest an inhibitory effect of energy drinks in muscle regeneration.
Collapse
Affiliation(s)
- Sun Young Park
- Division of Environmental Medicine, NYU Grossman School of Medicine, 341 East 25 Street, New York, NY, 10010, USA
| | | | - Hannah T Rosen
- Division of Environmental Medicine, NYU Grossman School of Medicine, 341 East 25 Street, New York, NY, 10010, USA
| | - Hong Sun
- Division of Environmental Medicine, NYU Grossman School of Medicine, 341 East 25 Street, New York, NY, 10010, USA.
| |
Collapse
|
2
|
Li H, Chen X, Zuo Z, Wang J, Guo Y. Identification and Characterization of Peptides from Bovine Collagen Hydrolysates that Promote Myogenic Cell Proliferation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4876-4889. [PMID: 36917229 DOI: 10.1021/acs.jafc.2c08929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, bovine collagen hydrolysate was purified via a series of chromatograms, and the peptides with the highest activity for promoting myoblast proliferation were identified by LC-MS-MS. It was demonstrated that the peptide GDAGPPGPAGPAGPPGPIG (hydroxylation) could promote C2C12 proliferation (+18.5% ± 0.04, P < 0.05). The certain peptide was capable of regulating the myogenic cell cycle and inhibiting myogenic cell apoptosis. By combining molecular docking, quantitative real-time PCR, and metabonomics, we suggested that the peptide GDAGPPGPAGPAGPPGPIG (hydroxylation) might bind to FGFR1 and affect the expression of genes downstream of FGFR1 and influence protein synthesis to promote myoblast proliferation. The above results showed that the peptides isolated in this study have the potential to alleviate sarcopenia in the elderly.
Collapse
Affiliation(s)
- Hanfeng Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Xin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Zhijie Zuo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Jianing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| |
Collapse
|
3
|
Liu J, Pan M, Liu Y, Huang D, Luo K, Wu Z, Zhang W, Mai K. Taurine alleviates endoplasmic reticulum stress, inflammatory cytokine expression and mitochondrial oxidative stress induced by high glucose in the muscle cells of olive flounder (Paralichthysolivaceus). FISH & SHELLFISH IMMUNOLOGY 2022; 123:358-368. [PMID: 35318136 DOI: 10.1016/j.fsi.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The aim of the present study was to evaluate the effects of taurine on endoplasmic reticulum stress, inflammatory cytokine expression and mitochondrial oxidative stress induced by high glucose in primary cultured muscle cells of olive flounder (Paralichthys olivaceus). Three experimental groups were designed as follows: muscle cells of olive flounder incubated with three kinds of medium containing 5 mM glucose (control), 33 mM glucose (HG) or 33 mM glucose + 10 mM taurine (HG + T), respectively. Results showed that taurine addition significantly alleviated the decreased activity of superoxide dismutase (SOD) and the ratio of reduced to oxidized glutathione (GSH/GSSG) induced by high glucose. The increase of cellular reactive oxygen species (ROS), malondialdehyde content and cell apoptosis induced by high glucose were alleviated by taurine. Besides, gene expression of glucose-regulated protein 78, PKR-like ER kinase, tumor necrosis factor-α, interleukin-6, interleukin-1β, interleukin-8, muscle atrophy F-box protein and muscle RING-finger protein 1 were significantly up-regulated in the HG group, and taurine addition decreased the expression of these genes. High glucose led to the swelling of the endoplasmic reticulum (ER). Meanwhile, the nuclear translocation of nuclear factor κB (NF-κB) and the release of cytochrome C from mitochondria induced by high glucose were suppressed by taurine addition. These results demonstrated that taurine alleviated ERS, inflammation and mitochondrial oxidative stress induced by high glucose in olive flounder muscle cells. The ROS production, NF-κB signaling pathway and mitochondria function were the main targets of the biological effects of taurine under high glucose condition.
Collapse
Affiliation(s)
- Jiahuan Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Yue Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Kai Luo
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Zhenhua Wu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| |
Collapse
|