1
|
Tataranu LG, Turliuc S, Rizea RE, Dricu A, Alexandru O, Staicu GA, Kamel A. A Synopsis of Biomarkers in Glioblastoma: Past and Present. Curr Issues Mol Biol 2024; 46:6903-6939. [PMID: 39057054 PMCID: PMC11275428 DOI: 10.3390/cimb46070412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Accounting for 48% of malignant brain tumors in adults, glioblastoma has been of great interest in the last decades, especially in the biomolecular and neurosurgical fields, due to its incurable nature and notable neurological morbidity. The major advancements in neurosurgical technologies have positively influenced the extent of safe tumoral resection, while the latest progress in the biomolecular field of GBM has uncovered new potential therapeutical targets. Although GBM currently has no curative therapy, recent progress has been made in the management of this disease, both from surgical and molecular perspectives. The main current therapeutic approach is multimodal and consists of neurosurgical intervention, radiotherapy, and chemotherapy, mostly with temozolomide. Although most patients will develop treatment resistance and tumor recurrence after surgical removal, biomolecular advancements regarding GBM have contributed to a better understanding of this pathology and its therapeutic management. Over the past few decades, specific biomarkers have been discovered that have helped predict prognosis and treatment responses and contributed to improvements in survival rates.
Collapse
Affiliation(s)
- Ligia Gabriela Tataranu
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy “G. T. Popa”, 700115 Iasi, Romania;
| | - Radu Eugen Rizea
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Oana Alexandru
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Georgiana-Adeline Staicu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| |
Collapse
|
2
|
Tomoszková S, Škarda J, Lipina R. Potential Diagnostic and Clinical Significance of Selected Genetic Alterations in Glioblastoma. Int J Mol Sci 2024; 25:4438. [PMID: 38674026 PMCID: PMC11050250 DOI: 10.3390/ijms25084438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma is currently considered the most common and, unfortunately, also the most aggressive primary brain tumor, with the highest morbidity and mortality rates. The average survival of patients diagnosed with glioblastoma is 14 months, and only 2% of patients survive 3 years after surgery. Based on our clinical experience and knowledge from extensive clinical studies, survival is mainly related to the molecular biological properties of glioblastoma, which are of interest to the general medical community. Our study examined a total of 71 retrospective studies published from 2016 through 2022 and available on PubMed that deal with mutations of selected genes in the pathophysiology of GBM. In conclusion, we can find other mutations within a given gene group that have different effects on the prognosis and quality of survival of a patient with glioblastoma. These mutations, together with the associated mutations of other genes, as well as intratumoral heterogeneity itself, offer enormous potential for further clinical research and possible application in therapeutic practice.
Collapse
Affiliation(s)
- Silvia Tomoszková
- Neurosurgery Clinic, University Hospital Ostrava, 17. listopadu 1790/5, 708 00 Ostrava, Czech Republic;
- Medical Faculty, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic;
| | - Jozef Škarda
- Medical Faculty, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic;
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, 17. listopadu 1790/5, 708 00 Ostrava, Czech Republic
| | - Radim Lipina
- Neurosurgery Clinic, University Hospital Ostrava, 17. listopadu 1790/5, 708 00 Ostrava, Czech Republic;
- Medical Faculty, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic;
| |
Collapse
|
3
|
Szmyd B, Stanisławska P, Podstawka M, Zaczkowski K, Izbiński PM, Kulczycka-Wojdala D, Stawski R, Wiśniewski K, Janczar K, Braun M, Białasiewicz P, Jaskólski DJ, Bobeff EJ. D-Loop Mutations as Prognostic Markers in Glioblastoma-A Pilot Study. Int J Mol Sci 2024; 25:4334. [PMID: 38673919 PMCID: PMC11050196 DOI: 10.3390/ijms25084334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma, a highly aggressive brain tumor, poses significant treatment challenges. A deeper investigation into its molecular complexity is essential for the identification of novel prognostic biomarkers and therapeutic strategies, potentially improving patient outcomes in terms of survival and quality of life. While nuclear DNA mutations have been extensively studied, the role of mitochondrial DNA (mtDNA) mutations, specifically in the D-loop region, remains poorly understood. This prospective case-control study aimed to assess the prognostic significance of the mtDNA D-loop m.16126T>C variant in glioblastoma patients. Immunohistochemistry and droplet digital PCR (ddPCR) were employed for mutation analysis, complemented by statistical analyses and a literature review. The study cohort comprised 22 glioblastoma patients (mean age 59.36 ± 14.17, 12 (54.55%) females), and 25 controls (59.48 ± 13.22, 12 (80%) females). The D-loop m.16126T>C variant was observed in four (18%) of the glioblastoma samples and was associated with shorter median survival (9.5 vs. 18 months; p = 0.016, log-rank test). This study underscores the importance of investigating mtDNA, especially D-loop variants, in glioblastoma, suggesting its potential as a prognostic biomarker and, therefore, its possible therapeutic targets, warranting further exploration.
Collapse
Affiliation(s)
- Bartosz Szmyd
- Department of Neurosurgery and Neuro-Oncology, Barlicki University Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (B.S.); (P.S.); (M.P.); (K.Z.); (P.M.I.); (K.W.); (D.J.J.)
| | - Patrycja Stanisławska
- Department of Neurosurgery and Neuro-Oncology, Barlicki University Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (B.S.); (P.S.); (M.P.); (K.Z.); (P.M.I.); (K.W.); (D.J.J.)
| | - Małgorzata Podstawka
- Department of Neurosurgery and Neuro-Oncology, Barlicki University Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (B.S.); (P.S.); (M.P.); (K.Z.); (P.M.I.); (K.W.); (D.J.J.)
| | - Karol Zaczkowski
- Department of Neurosurgery and Neuro-Oncology, Barlicki University Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (B.S.); (P.S.); (M.P.); (K.Z.); (P.M.I.); (K.W.); (D.J.J.)
| | - Patryk M. Izbiński
- Department of Neurosurgery and Neuro-Oncology, Barlicki University Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (B.S.); (P.S.); (M.P.); (K.Z.); (P.M.I.); (K.W.); (D.J.J.)
| | | | - Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Karol Wiśniewski
- Department of Neurosurgery and Neuro-Oncology, Barlicki University Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (B.S.); (P.S.); (M.P.); (K.Z.); (P.M.I.); (K.W.); (D.J.J.)
| | - Karolina Janczar
- Department of Pathology, Medical University of Lodz, 92-213 Lodz, Poland; (K.J.); (M.B.)
| | - Marcin Braun
- Department of Pathology, Medical University of Lodz, 92-213 Lodz, Poland; (K.J.); (M.B.)
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Dariusz J. Jaskólski
- Department of Neurosurgery and Neuro-Oncology, Barlicki University Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (B.S.); (P.S.); (M.P.); (K.Z.); (P.M.I.); (K.W.); (D.J.J.)
| | - Ernest J. Bobeff
- Department of Neurosurgery and Neuro-Oncology, Barlicki University Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (B.S.); (P.S.); (M.P.); (K.Z.); (P.M.I.); (K.W.); (D.J.J.)
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland;
| |
Collapse
|
4
|
Aljarrah D, Chalour N, Zorgani A, Nissan T, Pranjol MZI. Exploring the gut microbiota and its potential as a biomarker in gliomas. Biomed Pharmacother 2024; 173:116420. [PMID: 38471271 DOI: 10.1016/j.biopha.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
Gut microbiome alterations are associated with various cancers including brain tumours such as glioma and glioblastoma. The gut communicates with the brain via a bidirectional pathway known as the gut-brain axis (GBA) which is essential for maintaining homeostasis. The gut microbiota produces many metabolites including short chain fatty acids (SCFAs) and essential amino acids such as glutamate, glutamine, arginine and tryptophan. Through the modulation of these metabolites the gut microbiome is able to regulate several functions of brain cells, immune cells and tumour cells including DNA methylation, mitochondrial function, the aryl hydrocarbon receptor (AhR), T-cell proliferation, autophagy and even apoptosis. Here, we summarise current findings on gut microbiome with respect to brain cancers, an area of research that is widely overlooked. Several studies investigated the relationship between gut microbiota and brain tumours. However, it remains unclear whether the gut microbiome variation is a cause or product of cancer. Subsequently, a biomarker panel was constructed for use as a predictive, prognostic and diagnostic tool with respect to multiple cancers including glioma and glioblastoma multiforme (GBM). This review further presents the intratumoural microbiome, a fascinating microenvironment within the tumour as a possible treatment target that can be manipulated to maximise effectiveness of treatment via personalised therapy. Studies utilising the microbiome as a biomarker and therapeutic strategy are necessary to accurately assess the effectiveness of the gut microbiome as a clinical tool with respect to brain cancers.
Collapse
Affiliation(s)
- Dana Aljarrah
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK.
| | - Naima Chalour
- Cognitive and Behavioural Neuroscience laboratory, Houari Boumediene University of Science and Technology, Bab Ezzouar, Algiers, Algeria; Faculty of Biological Sciences, Houari Boumediene University of Science and Technology, Bab Ezzouar, Algiers, Algeria.
| | - Amine Zorgani
- The Microbiome Mavericks, 60 rue Christian Lacouture, Bron 69500, France.
| | - Tracy Nissan
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Md Zahidul I Pranjol
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
5
|
Godlewski A, Czajkowski M, Mojsak P, Pienkowski T, Gosk W, Lyson T, Mariak Z, Reszec J, Kondraciuk M, Kaminski K, Kretowski M, Moniuszko M, Kretowski A, Ciborowski M. A comparison of different machine-learning techniques for the selection of a panel of metabolites allowing early detection of brain tumors. Sci Rep 2023; 13:11044. [PMID: 37422554 PMCID: PMC10329700 DOI: 10.1038/s41598-023-38243-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023] Open
Abstract
Metabolomics combined with machine learning methods (MLMs), is a powerful tool for searching novel diagnostic panels. This study was intended to use targeted plasma metabolomics and advanced MLMs to develop strategies for diagnosing brain tumors. Measurement of 188 metabolites was performed on plasma samples collected from 95 patients with gliomas (grade I-IV), 70 with meningioma, and 71 healthy individuals as a control group. Four predictive models to diagnose glioma were prepared using 10 MLMs and a conventional approach. Based on the cross-validation results of the created models, the F1-scores were calculated, then obtained values were compared. Subsequently, the best algorithm was applied to perform five comparisons involving gliomas, meningiomas, and controls. The best results were obtained using the newly developed hybrid evolutionary heterogeneous decision tree (EvoHDTree) algorithm, which was validated using Leave-One-Out Cross-Validation, resulting in an F1-score for all comparisons in the range of 0.476-0.948 and the area under the ROC curves ranging from 0.660 to 0.873. Brain tumor diagnostic panels were constructed with unique metabolites, which reduces the likelihood of misdiagnosis. This study proposes a novel interdisciplinary method for brain tumor diagnosis based on metabolomics and EvoHDTree, exhibiting significant predictive coefficients.
Collapse
Affiliation(s)
- Adrian Godlewski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Marcin Czajkowski
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Patrycja Mojsak
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Tomasz Pienkowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Wioleta Gosk
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Tomasz Lyson
- Department of Neurosurgery, Medical University of Bialystok, Białystok, Poland
| | - Zenon Mariak
- Department of Neurosurgery, Medical University of Bialystok, Białystok, Poland
| | - Joanna Reszec
- Department of Medical Pathomorphology, Medical University of Bialystok, Białystok, Poland
| | - Marcin Kondraciuk
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Białystok, Poland
| | - Karol Kaminski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Białystok, Poland
| | - Marek Kretowski
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Białystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Białystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Białystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland.
| |
Collapse
|
6
|
Toklu S, Kemerdere R, Kacira T, Gurses MS, Benli Aksungar F, Tanriverdi T. Tissue and plasma free amino acid detection by LC-MS/MS method in high grade glioma patients. J Neurooncol 2023:10.1007/s11060-023-04329-z. [PMID: 37278937 DOI: 10.1007/s11060-023-04329-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/25/2023] [Indexed: 06/07/2023]
Abstract
PURPOSE The changes in serum amino acid profiles are evaluated in different types of cancers and screening tests were developed for estimating the risk of cancer by rapid analysis of plasma free amino acid (PFAA) levels. There is scarce evidence about the metabolomics analysis of PFAA in malignant gliomas. The aim of the present study was to identify the most promising diagnostic amino acid biomarkers that could be objectively measured for high-grade glioma and to compare their level with the tissue counterpart. METHODS In this prospective study, we collected serum samples from 22 patients with the pathological diagnosis of high-grade diffuse glioma according to WHO 2016 classification and 22 healthy subjects, and brain tissue from 22 controls. Plasma and tissue amino acid concentrations were analyzed applying liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. RESULTS Serum alanine, alpha-aminobutyric acid (AABA), lysine (Lys) and cysteine concentrations were significantly higher in high-grade glioma patients despite low levels of alanine and Lys in the tumor tissue. Aspartic acid, histidine and taurine were significantly decreased in both serum and tumors of glioma patients. A positive correlation was detected between tumor volumes and serum levels of latter three amino acids. CONCLUSION This study demonstrated potential amino acids which may have diagnostic value for high-grade glioma patients by utilizing LC-MS/MS method. Our results are preliminary to compare serum and tissue levels of amino acids in patients with malignant gliomas. The data presented here may provide feature ideas about the metabolic pathways in the pathogenesis of gliomas.
Collapse
Affiliation(s)
- Sureyya Toklu
- Department of Neurosurgery, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Rahsan Kemerdere
- Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, 34098, Istanbul, Turkey.
| | - Tibet Kacira
- Department of Neurosurgery, Medical Faculty, Sakarya University, Sakarya, Turkey
| | - Murat Serdar Gurses
- Department of Forensic Medicine, Medical Faculty, Sakarya University, Sakarya, Turkey
| | - Fehime Benli Aksungar
- Department of Biochemistry, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Taner Tanriverdi
- Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, 34098, Istanbul, Turkey
| |
Collapse
|
7
|
Bafiti V, Ouzounis S, Siapi E, Grypari IM, Theofanopoulos A, Panagiotopoulos V, Zolota V, Kardamakis D, Katsila T. Bioenergetic Profiling in Glioblastoma Multiforme Patients with Different Clinical Outcomes. Metabolites 2023; 13:362. [PMID: 36984801 PMCID: PMC10051505 DOI: 10.3390/metabo13030362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The accumulation of cell biomass is associated with dramatically increased bioenergetic and biosynthetic demand. Metabolic reprogramming, once thought as an epiphenomenon, currently relates to disease progression, also in response to extracellular fate-decisive signals. Glioblastoma multiforme patients often suffer misdiagnosis, short survival time, low quality of life, and poor disease management options. Today, tumor genetic testing and histological analysis guide diagnosis and treatment. We and others appreciate that metabolites complement translational biomarkers and molecular signatures in disease profiling and phenotyping. Herein, we coupled a mixed-methods content analysis to a mass spectrometry-based untargeted metabolomic analysis on plasma samples from glioblastoma multiforme patients to delineate the role of metabolic remodeling in biological plasticity and, hence, disease severity. Following data processing and analysis, we established a bioenergetic profile coordinated by the mitochondrial function and redox state, lipids, and energy substrates. Our findings show that epigenetic modulators are key players in glioblastoma multiforme cell metabolism, in particular when microRNAs are considered. We propose that biological plasticity in glioblastoma multiforme is a mechanism of adaptation and resistance to treatment which is eloquently revealed by bioenergetics.
Collapse
Affiliation(s)
- Vivi Bafiti
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Sotiris Ouzounis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Eleni Siapi
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Ioanna Maria Grypari
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | | | - Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Dimitrios Kardamakis
- Department of Radiation Oncology, University of Patras Medical School, 26504 Patras, Greece
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
8
|
Rewired Metabolism of Amino Acids and Its Roles in Glioma Pathology. Metabolites 2022; 12:metabo12100918. [PMID: 36295820 PMCID: PMC9611130 DOI: 10.3390/metabo12100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Amino acids (AAs) are indispensable building blocks of diverse bio-macromolecules as well as functional regulators for various metabolic processes. The fact that cancer cells live with a voracious appetite for specific AAs has been widely recognized. Glioma is one of the most lethal malignancies occurring in the central nervous system. The reprogrammed metabolism of AAs benefits glioma proliferation, signal transduction, epigenetic modification, and stress tolerance. Metabolic alteration of specific AAs also contributes to glioma immune escape and chemoresistance. For clinical consideration, fluctuations in the concentrations of AAs observed in specific body fluids provides opportunities to develop new diagnosis and prognosis markers. This review aimed at providing an extra dimension to understanding glioma pathology with respect to the rewired AA metabolism. A deep insight into the relevant fields will help to pave a new way for new therapeutic target identification and valuable biomarker development.
Collapse
|
9
|
Liang J, Li T, Zhao J, Wang C, Sun H. Current understanding of the human microbiome in glioma. Front Oncol 2022; 12:781741. [PMID: 36003766 PMCID: PMC9393498 DOI: 10.3389/fonc.2022.781741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
There is mounting evidence that the human microbiome is highly associated with a wide variety of central nervous system diseases. However, the link between the human microbiome and glioma is rarely noticed. The exact mechanism of microbiota to affect glioma remains unclear. Recent studies have demonstrated that the microbiome may affect the development, progress, and therapy of gliomas, including the direct impacts of the intratumoral microbiome and its metabolites, and the indirect effects of the gut microbiome and its metabolites. Glioma-related microbiome (gut microbiome and intratumoral microbiome) is associated with both tumor microenvironment and tumor immune microenvironment, which ultimately influence tumorigenesis, progression, and responses to treatment. In this review, we briefly summarize current knowledge regarding the role of the glioma-related microbiome, focusing on its gut microbiome fraction and a brief description of the intratumoral microbiome, and put forward the prospects in which microbiome can be applied in the future and some challenges still need to be solved.
Collapse
Affiliation(s)
- Jianhao Liang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiajia Zhao
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
- *Correspondence: Haitao Sun,
| |
Collapse
|
10
|
Bobeff EJ, Bukowiecka-Matusiak M, Stawiski K, Wiśniewski K, Burzynska-Pedziwiatr I, Kordzińska M, Kowalski K, Sendys P, Piotrowski M, Szczesna D, Stefańczyk L, Wozniak LA, Jaskólski DJ. Plasma Amino Acids May Improve Prediction Accuracy of Cerebral Vasospasm after Aneurysmal Subarachnoid Haemorrhage. J Clin Med 2022; 11:jcm11020380. [PMID: 35054073 PMCID: PMC8779950 DOI: 10.3390/jcm11020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Aneurysmal subarachnoid haemorrhages (aSAH) account for 5% of strokes and continues to place a great burden on patients and their families. Cerebral vasospasm (CVS) is one of the main causes of death after aSAH, and is usually diagnosed between day 3 and 14 after bleeding. Its pathogenesis remains poorly understood. To verify whether plasma concentration of amino acids have prognostic value in predicting CVS, we analysed data from 35 patients after aSAH (median age 55 years, IQR 39-62; 20 females, 57.1%), and 37 healthy volunteers (median age 50 years, IQR 38-56; 19 females, 51.4%). Fasting peripheral blood samples were collected on postoperative day one and seven. High performance liquid chromatography-mass spectrometry (HPLC-MS) analysis was performed. The results showed that plasma from patients after aSAH featured a distinctive amino acids concentration which was presented in both principal component analysis and direct comparison. No significant differences were noted between postoperative day one and seven. A total of 18 patients from the study group (51.4%) developed CVS. Hydroxyproline (AUC = 0.7042, 95%CI 0.5259-0.8826, p = 0.0248) and phenylalanine (AUC = 0.6944, 95%CI 0.5119-0.877, p = 0.0368) presented significant CVS prediction potential. Combining the Hunt-Hess Scale and plasma levels of hydroxyproline and phenylalanine provided the model with the best predictive performance and the lowest leave-one-out cross-validation of performance error. Our results suggest that plasma amino acids may improve sensitivity and specificity of Hunt-Hess scale in predicting CVS.
Collapse
Affiliation(s)
- Ernest Jan Bobeff
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (K.W.); (M.P.); (D.J.J.)
- Correspondence: ; Tel.: +48-42-677-6770; Fax: +48-42-677-6781
| | - Malgorzata Bukowiecka-Matusiak
- Department of Structural Biology, Medical University of Lodz, 90-419 Lodz, Poland; (M.B.-M.); (I.B.-P.); (D.S.); (L.A.W.)
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Mazowiecka 15 Street, 92-215 Lodz, Poland;
| | - Karol Wiśniewski
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (K.W.); (M.P.); (D.J.J.)
| | - Izabela Burzynska-Pedziwiatr
- Department of Structural Biology, Medical University of Lodz, 90-419 Lodz, Poland; (M.B.-M.); (I.B.-P.); (D.S.); (L.A.W.)
| | - Magdalena Kordzińska
- Department of Radiology, Barlicki Memorial Teaching Hospital, Medical University of Lodz, Kopcinskiego 22 Street, 90-153 Lodz, Poland; (M.K.); (L.S.)
| | - Konrad Kowalski
- Laboratorium Diagnostyczne Masdiag, ul. Żeromskiego 33, 01-882 Warszawa, Poland; (K.K.); (P.S.)
| | - Przemyslaw Sendys
- Laboratorium Diagnostyczne Masdiag, ul. Żeromskiego 33, 01-882 Warszawa, Poland; (K.K.); (P.S.)
| | - Michał Piotrowski
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (K.W.); (M.P.); (D.J.J.)
| | - Dorota Szczesna
- Department of Structural Biology, Medical University of Lodz, 90-419 Lodz, Poland; (M.B.-M.); (I.B.-P.); (D.S.); (L.A.W.)
| | - Ludomir Stefańczyk
- Department of Radiology, Barlicki Memorial Teaching Hospital, Medical University of Lodz, Kopcinskiego 22 Street, 90-153 Lodz, Poland; (M.K.); (L.S.)
| | - Lucyna Alicja Wozniak
- Department of Structural Biology, Medical University of Lodz, 90-419 Lodz, Poland; (M.B.-M.); (I.B.-P.); (D.S.); (L.A.W.)
| | - Dariusz Jan Jaskólski
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (K.W.); (M.P.); (D.J.J.)
| |
Collapse
|
11
|
Gilard V, Ferey J, Marguet F, Fontanilles M, Ducatez F, Pilon C, Lesueur C, Pereira T, Basset C, Schmitz-Afonso I, Di Fioré F, Laquerrière A, Afonso C, Derrey S, Marret S, Bekri S, Tebani A. Integrative Metabolomics Reveals Deep Tissue and Systemic Metabolic Remodeling in Glioblastoma. Cancers (Basel) 2021; 13:5157. [PMID: 34680306 PMCID: PMC8534284 DOI: 10.3390/cancers13205157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Glioblastoma is the most common malignant brain tumor in adults. Its etiology remains unknown in most cases. Glioblastoma pathogenesis consists of a progressive infiltration of the white matter by tumoral cells leading to progressive neurological deficit, epilepsy, and/or intracranial hypertension. The mean survival is between 15 to 17 months. Given this aggressive prognosis, there is an urgent need for a better understanding of the underlying mechanisms of glioblastoma to unveil new diagnostic strategies and therapeutic targets through a deeper understanding of its biology. (2) Methods: To systematically address this issue, we performed targeted and untargeted metabolomics-based investigations on both tissue and plasma samples from patients with glioblastoma. (3) Results: This study revealed 176 differentially expressed lipids and metabolites, 148 in plasma and 28 in tissue samples. Main biochemical classes include phospholipids, acylcarnitines, sphingomyelins, and triacylglycerols. Functional analyses revealed deep metabolic remodeling in glioblastoma lipids and energy substrates, which unveils the major role of lipids in tumor progression by modulating its own environment. (4) Conclusions: Overall, our study demonstrates in situ and systemic metabolic rewiring in glioblastoma that could shed light on its underlying biological plasticity and progression to inform diagnosis and/or therapeutic strategies.
Collapse
Affiliation(s)
- Vianney Gilard
- Department of Neurosurgery, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France;
| | - Justine Ferey
- Department of Metabolic Biochemistry, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France; (J.F.); (F.D.); (C.P.); (C.L.); (A.T.)
| | - Florent Marguet
- Department of Pathology, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France; (F.M.); (C.B.); (A.L.)
| | - Maxime Fontanilles
- Institut de Biologie Clinique, CHU Rouen, 76000 Rouen, France; (M.F.); (T.P.)
- INSA Rouen, CNRS IRCOF, 1 Rue TesnieÌre, COBRA UMR 6014 Et FR 3038 University Rouen, Normandie University, CEDEX, 76821 Mont-Saint-Aignan, France; (I.S.-A.); (C.A.)
| | - Franklin Ducatez
- Department of Metabolic Biochemistry, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France; (J.F.); (F.D.); (C.P.); (C.L.); (A.T.)
- Intensive Care and Neuropediatrics, Department of Neonatal Pediatrics, INSERM U1245, CHU Rouen, UNIROUEN, Normandie University, 76000 Rouen, France;
| | - Carine Pilon
- Department of Metabolic Biochemistry, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France; (J.F.); (F.D.); (C.P.); (C.L.); (A.T.)
| | - Céline Lesueur
- Department of Metabolic Biochemistry, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France; (J.F.); (F.D.); (C.P.); (C.L.); (A.T.)
| | - Tony Pereira
- Institut de Biologie Clinique, CHU Rouen, 76000 Rouen, France; (M.F.); (T.P.)
| | - Carole Basset
- Department of Pathology, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France; (F.M.); (C.B.); (A.L.)
| | - Isabelle Schmitz-Afonso
- INSA Rouen, CNRS IRCOF, 1 Rue TesnieÌre, COBRA UMR 6014 Et FR 3038 University Rouen, Normandie University, CEDEX, 76821 Mont-Saint-Aignan, France; (I.S.-A.); (C.A.)
| | - Frédéric Di Fioré
- Normandy Centre for Genomic and Personalized Medicine, IRON Group, INSERM U1245, UNIROUEN, Normandie University, 76000 Rouen, France;
- Department of Medical Oncology, Cancer Centre Henri Becquerel, Rue d’Amiens, 76000 Rouen, France
| | - Annie Laquerrière
- Department of Pathology, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France; (F.M.); (C.B.); (A.L.)
| | - Carlos Afonso
- INSA Rouen, CNRS IRCOF, 1 Rue TesnieÌre, COBRA UMR 6014 Et FR 3038 University Rouen, Normandie University, CEDEX, 76821 Mont-Saint-Aignan, France; (I.S.-A.); (C.A.)
| | - Stéphane Derrey
- Department of Neurosurgery, CHU Rouen, INSERM U1073, UNIROUEN, Normandie University, 76000 Rouen, France;
| | - Stéphane Marret
- Intensive Care and Neuropediatrics, Department of Neonatal Pediatrics, INSERM U1245, CHU Rouen, UNIROUEN, Normandie University, 76000 Rouen, France;
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France; (J.F.); (F.D.); (C.P.); (C.L.); (A.T.)
| | - Abdellah Tebani
- Department of Metabolic Biochemistry, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France; (J.F.); (F.D.); (C.P.); (C.L.); (A.T.)
| |
Collapse
|