1
|
Akkuş N, Duman TA. First Clinical Report of Two RAB3GAP1 Pathogenic Variant in Warburg Micro Syndrome. J Pediatr Genet 2023; 12:193-198. [PMID: 37575647 PMCID: PMC10421685 DOI: 10.1055/s-0043-1768693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/10/2023] [Indexed: 08/15/2023]
Abstract
Warburg micro (WARBM) syndrome is an autosomal recessive disease characterized by severe brain and eye abnormalities. Loss-of-function mutations in RAB18, RAB3GAP2, RAB3GAP1, or TBC1D20 can lead to this disease. Here, we present two unrelated WARBM syndrome patients who had an RAB3GAP1 c.559 C > T, (p.Arg187Ter) and c.520 C > T (p.Arg174Ter) homozygous state. Both patients had microcephaly, microphthalmia, microcornea, bilateral congenital cataracts, severe intellectual disability, and congenital hypotonia. Using the method of next-generation sequencing and sanger sequencing, we found two nonsense variations at the splice site in exon 7 of RAB3GAP1 in the WARBM syndrome patients. The mutations were predicted to cause the syndrome due to the early stop codon, and the patients had the WARBM1 syndrome. We present the first clinical report of two different unreported variants with RAB3GAP1 mutation in the literature.
Collapse
Affiliation(s)
- Nejmiye Akkuş
- Department of Medical Genetics, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Türkiye
| | - Tuğba Akın Duman
- Department of Medical Genetics, Haseki Training and Research Hospital, Ministry of Health, Istanbul, Türkiye
| |
Collapse
|
2
|
Liu Y, Zhang M, Liu Z, Li S, Liu H, Huang R, Yi F, Zhou J. A strategy can be used to analyze intracellular interaction proteomics of cell-surface receptors. Amino Acids 2023; 55:263-273. [PMID: 36539546 DOI: 10.1007/s00726-022-03223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Comprehensive knowledge of the intracellular protein interactions of cell-surface receptors will greatly advance our comprehension of the underlying trafficking mechanisms. Hence, development of effective and high-throughput approaches is highly desired. In this work, we presented a strategy aiming to tailor toward the analysis of intracellular protein interactome of cell-surface receptors. We used α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors subunit GluA1 as an example to illustrate the methodological application. To capture intracellular proteins that interact with GluA1, after surface biotinylation of the prepared hippocampal neurons and slices, the non-biotinylated protein components as intracellular protein-enriched fraction were unconventionally applied for the following co-immunoprecipitation. The co-immuno-precipitated proteins were then analyzed through mass spectrometry-based proteomics and bioinformatics platforms. The detailed localizations indicated that intracellular proteins accounted for up to 93.7 and 90.3% of the analyzed proteins in the neurons and slices, respectively, suggesting that our protein preparation was highly effective to characterize intracellular interactome of GluA1. Further, we systematically revealed the protein functional profile of GluA1 intracellular interactome, thereby providing complete overview and better comprehension of diverse intracellular biological processes correlated with the complex GluA1 trafficking. All experimental results demonstrated that our methodology would be applicable and useful for intracellular interaction proteomics of general cell-surface receptors.
Collapse
Affiliation(s)
- Yanchen Liu
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Mingming Zhang
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Zhao Liu
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Shuiming Li
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hangfei Liu
- Shenzhen Wininnovate Bio-Tech Co., Ltd,, Shenzhen, 518073, China
| | - Rongzhong Huang
- ChuangXu Institute of Life Science, Chongqing, 400016, China.,Chongqing Institute of Life Science, Chongqing, 400016, China
| | - Faping Yi
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China.
| | - Jian Zhou
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China.
| |
Collapse
|
3
|
Wang X, Yu D, Wang H, Lei Z, Zhai Y, Sun M, Chen S, Yin P. Rab3 and synaptotagmin proteins in the regulation of vesicle fusion and neurotransmitter release. Life Sci 2022; 309:120995. [PMID: 36167148 DOI: 10.1016/j.lfs.2022.120995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022]
Abstract
Ca2+-triggered neurotransmitter release involves complex regulatory mechanisms, including a series of protein-protein interactions. Three proteins, synaptobrevin (VAMP), synaptosomal-associated protein of 25kDa (SNAP-25) and syntaxin, constitute the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core complex that plays key roles in controlling vesicle fusion and exocytosis. Many other proteins participate in the regulation of the processes via direct and/or indirect interaction with the SNARE complex. Although much effort has been made, the regulatory mechanism for exocytosis is still not completely clear. Accumulated evidence indicates that the small GTPase Rab3 and synaptotagmin proteins play important regulatory roles during vesicle fusion and neurotransmitter release. This review outlines our present understanding of the two regulatory proteins, with the focus on the interaction of Rab3 with synaptotagmin in the regulatory process.
Collapse
Affiliation(s)
- Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Dianmei Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Haiyan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhixiang Lei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yiwen Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Minlu Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Panfeng Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
4
|
Geng P, Qin W, Xu G. Proline metabolism in cancer. Amino Acids 2021; 53:1769-1777. [PMID: 34390414 DOI: 10.1007/s00726-021-03060-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/01/2021] [Indexed: 01/01/2023]
Abstract
Cancer cells often change their metabolism to support uncontrolled proliferation. Proline is the only proteogenic secondary amino acid that is abundant in the body. Recent studies have shown that proline metabolism plays an important role in metabolic reprogramming and affects the occurrence and development of cancer. Proline metabolism is related to ATP production, protein and nucleotide synthesis, and redox homeostasis in tumor cells. Proline can be synthesized by aldehyde dehydrogenase family 18 member A1 (ALDH18A1) and delta1-pyrroline-5-carboxylate reductase (PYCR), up-regulating ALDH18A1 and PYCR can promote the proliferation and invasion of cancer cells. As the main storage of proline, collagen can influence cancer cells proliferation, invasion, and metastasis. Its synthesis depends on the hydroxylation of proline catalyzed by prolyl 4-hydroxylases (P4Hs), which will affect the plasticity and metastasis of cancer cells. The degradation of proline occurs in the mitochondria and involves an oxidation step catalyzed by proline dehydrogenase/proline oxidase (PRODH/POX). Proline catabolism has a dual role in cancer, linking apoptosis with the survival and metastasis of cancer cells. In addition, it has been demonstrated that the regulation of proline metabolic enzymes at the genetic and post-translational levels is related to cancer. This article reviews the role of proline metabolic enzymes in cancer proliferation, apoptosis, metastasis, and development. Research on proline metabolism may provide a new strategy for cancer treatment.
Collapse
Affiliation(s)
- Pengyu Geng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wangshu Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|