1
|
Balleste AF, Sangadi A, Titus DJ, Johnstone T, Hogenkamp D, Gee KW, Atkins CM. Enhancing cognitive recovery in chronic traumatic brain injury through simultaneous allosteric modulation of α7 nicotinic acetylcholine and α5 GABA A receptors. Exp Neurol 2024; 379:114879. [PMID: 38942266 PMCID: PMC11283977 DOI: 10.1016/j.expneurol.2024.114879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Traumatic brain injury (TBI) leads to changes in the neural circuitry of the hippocampus that result in chronic learning and memory deficits. However, effective therapeutic strategies to ameliorate these chronic learning and memory impairments after TBI are limited. Two pharmacological targets for enhancing cognition are nicotinic acetylcholine receptors (nAChRs) and GABAA receptors (GABAARs), both of which regulate hippocampal network activity to form declarative memories. A promising compound, 522-054, both allosterically enhances α7 nAChRs and inhibits α5 subunit-containing GABAARs. Administration of 522-054 enhances long-term potentiation (LTP) and cognitive functioning in non-injured animals. In this study, we assessed the effects of 522-054 on hippocampal synaptic plasticity and learning and memory deficits in the chronic post-TBI recovery period. Adult male Sprague Dawley rats received moderate parasagittal fluid-percussion brain injury or sham surgery. At 12 wk after injury, we assessed basal synaptic transmission and LTP at the Schaffer collateral-CA1 synapse of the hippocampus. Bath application of 522-054 to hippocampal slices reduced deficits in basal synaptic transmission and recovered TBI-induced impairments in LTP. Moreover, treatment of animals with 522-054 at 12 wk post-TBI improved cue and contextual fear memory and water maze acquisition and retention without a measurable effect on cortical or hippocampal atrophy. These results suggest that dual allosteric modulation of α7 nAChR and α5 GABAAR signaling may be a potential therapy for treating cognitive deficits during chronic recovery from TBI.
Collapse
Affiliation(s)
- Alyssa F Balleste
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Akhila Sangadi
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David J Titus
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | - Derk Hogenkamp
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, USA
| | - Kelvin W Gee
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, USA
| | - Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
2
|
Dehbozorgi M, Maghsoudi MR, Mohammadi I, Firouzabadi SR, Mohammaditabar M, Oraee S, Aarabi A, Goodarzi M, Shafiee A, Bakhtiyari M. Incidence of anxiety after traumatic brain injury: a systematic review and meta-analysis. BMC Neurol 2024; 24:293. [PMID: 39174923 PMCID: PMC11340054 DOI: 10.1186/s12883-024-03791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is defined as acquired cerebral damage caused by an external mechanical impact, which has the potential to lead to transient or enduring debilitation. TBI is associated with many forms of long-lasting psychiatric conditions, including anxiety disorders. As anxiety is highly debilitating by causing impaired social functioning and decreased quality of life for the afflicted, especially in the form of anxiety disorders such as generalized anxiety disorder, certain efforts have been made to explore the factors associated with it, and one such factor is TBI. METHODS We searched PubMed, Scopus, and Web of Science on January 26th, 2024 for observational case-control or cohort or cross-sectional studies assessing the incidence of anxiety symptoms or disorders in patients with TBI compared to healthy individuals or the same individuals if pre-TBI information regarding anxiety was available. We calculated the pooled incidence and relative risk (RR) and 95% confidence interval (95CI) using the inverse variance method. Publication bias was assessed using Eggers's regression test. Quality assessment was performed using the Newcastle-Ottawa scale. Sub-group analyses were conducted for the type of anxiety (anxiety disorder vs anxiety symptoms), TBI severity, and type of anxiety disorders. RESULTS The incidence rate of anxiety after traumatic brain injury was 17.45% (95CI: 12.59%, 22.31%) in a total of 705,024 individuals. Moreover, TBI patients were found to be 1.9 times as likely to have anxiety compared to their non-TBI counterparts [Random effects model RR = 1.90 [1.62; 2.23], p-value < 0.0001] using a population of 569,875 TBI cases and 1,640,312 non-TBI controls. Sub-group analysis revealed TBI severity was not associated with anxiety and generalized anxiety disorder was the most common type of anxiety disorder reported post-TBI. CONCLUSION Patients who have experienced a TBI exhibit a significantly greater incidence of anxiety symptoms and anxiety disorders in the aftermath when compared to healthy individuals.
Collapse
Affiliation(s)
| | - Mohammad Reza Maghsoudi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Ida Mohammadi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Mohammaditabar
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Soroush Oraee
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Aarabi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mana Goodarzi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Shafiee
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Alborz University of Medical Sciences, Karaj, Iran.
| | - Mahmood Bakhtiyari
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
3
|
Mata-Bermudez A, Trejo-Chávez R, Martínez-Vargas M, Pérez-Arredondo A, Martínez-Cardenas MDLÁ, Diaz-Ruiz A, Rios C, Navarro L. Dysregulation of the dopaminergic system secondary to traumatic brain injury: implications for mood and anxiety disorders. Front Neurosci 2024; 18:1447688. [PMID: 39176379 PMCID: PMC11338874 DOI: 10.3389/fnins.2024.1447688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Traumatic brain injury (TBI) represents a public health issue with a high mortality rate and severe neurological and psychiatric consequences. Mood and anxiety disorders are some of the most frequently reported. Primary and secondary damage can cause a loss of neurons and glial cells, leading to dysfunction of neuronal circuits, which can induce imbalances in many neurotransmitter systems. Monoaminergic systems, especially the dopaminergic system, are some of the most involved in the pathogenesis of neuropsychiatric and cognitive symptoms after TBI. In this work, we summarize the studies carried out in patients who have suffered TBI and describe alterations in the dopaminergic system, highlighting (1) dysfunction of the dopaminergic neuronal circuits caused by TBI, where modifications are shown in the dopamine transporter (DAT) and alterations in the expression of dopamine receptor 2 (D2R) in brain areas with dopaminergic innervation, thus establishing a hypodopaminergic state and (2) variations in the concentration of dopamine and its metabolites in biological fluids of post-TBI patients, such as elevated dopamine (DA) and alterations in homovanillic acid (HVA). On the other hand, we show a large number of reports of alterations in the dopaminergic system after a TBI in animal models, in which modifications in the levels of DA, DAT, and HVA have been reported, as well as alterations in the expression of tyrosine hydroxylase (TH). We also describe the biological pathways, neuronal circuits, and molecular mechanisms potentially involved in mood and anxiety disorders that occur after TBI and are associated with alterations of the dopaminergic system in clinical studies and animal models. We describe the changes that occur in the clinical picture of post-TBI patients, such as alterations in mood and anxiety associated with DAT activity in the striatum, the relationship between post-TBI major depressive disorders (MDD) with lower availability of the DA receptors D2R and D3R in the caudate and thalamus, as well as a decrease in the volume of the substantia nigra (SN) associated with anxiety symptoms. With these findings, we discuss the possible relationship between the disorders caused by alterations in the dopaminergic system in patients with TBI.
Collapse
Affiliation(s)
- Alfonso Mata-Bermudez
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ricardo Trejo-Chávez
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Doctorado en Ciencias Biomedicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marina Martínez-Vargas
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Adán Pérez-Arredondo
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico
| | - Camilo Rios
- Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, Mexico
- Dirección de Investigación, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Ciudad de México, Mexico
| | - Luz Navarro
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
4
|
Witkin JM, Shafique H, Cerne R, Smith JL, Marini AM, Lipsky RH, Delery E. Mechanistic and therapeutic relationships of traumatic brain injury and γ-amino-butyric acid (GABA). Pharmacol Ther 2024; 256:108609. [PMID: 38369062 DOI: 10.1016/j.pharmthera.2024.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
Traumatic brain injury (TBI) is a highly prevalent medical condition for which no medications specific for the prophylaxis or treatment of the condition as a whole exist. The spectrum of symptoms includes coma, headache, seizures, cognitive impairment, depression, and anxiety. Although it has been known for years that the inhibitory neurotransmitter γ-amino-butyric acid (GABA) is involved in TBI, no novel therapeutics based upon this mechanism have been introduced into clinical practice. We review the neuroanatomical, neurophysiological, neurochemical, and neuropharmacological relationships of GABA neurotransmission to TBI with a view toward new potential GABA-based medicines. The long-standing idea that excitatory and inhibitory (GABA and others) balances are disrupted by TBI is supported by the experimental data but has failed to invent novel methods of restoring this balance. The slow progress in advancing new treatments is due to the complexity of the disorder that encompasses multiple dynamically interacting biological processes including hemodynamic and metabolic systems, neurodegeneration and neurogenesis, major disruptions in neural networks and axons, frank brain lesions, and a multitude of symptoms that have differential neuronal and neurohormonal regulatory mechanisms. Although the current and ongoing clinical studies include GABAergic drugs, no novel GABA compounds are being explored. It is suggested that filling the gap in understanding the roles played by specific GABAA receptor configurations within specific neuronal circuits could help define new therapeutic approaches. Further research into the temporal and spatial delivery of GABA modulators should also be useful. Along with GABA modulation, research into the sequencing of GABA and non-GABA treatments will be needed.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA.
| | | | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA; Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
| | - Ann M Marini
- Department of Neurology, Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Robert H Lipsky
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Elizabeth Delery
- College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Hu X, Ou Y, Li J, Sun M, Ge Q, Pan Y, Cai Z, Tan R, Wang W, An J, Lu H. Voluntary Exercise to Reduce Anxiety Behaviour in Traumatic Brain Injury Shown to Alleviate Inflammatory Brain Response in Mice. Int J Mol Sci 2023; 24:ijms24076365. [PMID: 37047351 PMCID: PMC10093932 DOI: 10.3390/ijms24076365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Traumatic brain injury is a leading cause of neuroinflammation and anxiety disorders in young adults. Immune-targeted therapies have garnered attention for the amelioration of TBI-induced anxiety. A previous study has indicated that voluntary exercise intervention following TBI could reduce neuroinflammation. It is essential to determine the effects of voluntary exercise after TBI on anxiety via inhibiting neuroinflammatory response. Mice were randomly divided into four groups (sham, TBI, sham + voluntary wheel running (VWR), and TBI + VWR). One-week VWR was carried out on the 2nd day after trauma. The neurofunction of TBI mice was assessed. Following VWR, anxiety behavior was evaluated, and neuroinflammatory responses in the perilesional cortex were investigated. Results showed that after one week of VWR, neurofunctional recovery was enhanced, while the anxiety behavior of TBI mice was significantly alleviated. The level of pro-inflammatory factors decreased, and the level of anti-inflammatory factors elevated. Activation of nucleotide oligomerization domain-like thermal receptor protein domain associated protein 3 (NLRP3) inflammasome was inhibited significantly. All these alterations were consistent with reduced microglial activation at the perilesional site and positively correlated with the amelioration of anxiety behavior. This suggested that timely rehabilitative exercise could be a useful therapeutic strategy for anxiety resulting from TBI by targeting neuroinflammation.
Collapse
Affiliation(s)
- Xiaoxuan Hu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yuhang Ou
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Jiashuo Li
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Meiqi Sun
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Qian Ge
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yongqi Pan
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Zhenlu Cai
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Ruolan Tan
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Wenyu Wang
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Jing An
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Correspondence: (J.A.); (H.L.)
| | - Haixia Lu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Correspondence: (J.A.); (H.L.)
| |
Collapse
|