1
|
Pathophysiology and Emerging Molecular Therapeutic Targets in Heterotopic Ossification. Int J Mol Sci 2022; 23:ijms23136983. [PMID: 35805978 PMCID: PMC9266941 DOI: 10.3390/ijms23136983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
The term heterotopic ossification (HO) describes bone formation in tissues where bone is normally not present. Musculoskeletal trauma induces signalling events that in turn trigger cells, probably of mesenchymal origin, to differentiate into bone. The aetiology of HO includes extremely rare but severe, generalised and fatal monogenic forms of the disease; and as a common complex disorder in response to musculoskeletal, neurological or burn trauma. The resulting bone forms through a combination of endochondral and intramembranous ossification, depending on the aetiology, initiating stimulus and affected tissue. Given the heterogeneity of the disease, many cell types and biological pathways have been studied in efforts to find effective therapeutic strategies for the disorder. Cells of mesenchymal, haematopoietic and neuroectodermal lineages have all been implicated in the pathogenesis of HO, and the emerging dominant signalling pathways are thought to occur through the bone morphogenetic proteins (BMP), mammalian target of rapamycin (mTOR), and retinoic acid receptor pathways. Increased understanding of these disease mechanisms has resulted in the emergence of several novel investigational therapeutic avenues, including palovarotene and other retinoic acid receptor agonists and activin A inhibitors that target both canonical and non-canonical signalling downstream of the BMP type 1 receptor. In this article we aim to illustrate the key cellular and molecular mechanisms involved in the pathogenesis of HO and outline recent advances in emerging molecular therapies to treat and prevent HO that have had early success in the monogenic disease and are currently being explored in the common complex forms of HO.
Collapse
|
2
|
Ventura F, Williams E, Ikeya M, Bullock AN, ten Dijke P, Goumans MJ, Sanchez-Duffhues G. Challenges and Opportunities for Drug Repositioning in Fibrodysplasia Ossificans Progressiva. Biomedicines 2021; 9:biomedicines9020213. [PMID: 33669809 PMCID: PMC7922784 DOI: 10.3390/biomedicines9020213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 01/05/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an ultrarare congenital disease that progresses through intermittent episodes of bone formation at ectopic sites. FOP patients carry heterozygous gene point mutations in activin A receptor type I ACVR1, encoding the bone morphogenetic protein (BMP) type I serine/threonine kinase receptor ALK2, termed activin receptor-like kinase (ALK)2. The mutant ALK2 displays neofunctional responses to activin, a closely related BMP cytokine that normally inhibits regular bone formation. Moreover, the mutant ALK2 becomes hypersensitive to BMPs. Both these activities contribute to enhanced ALK2 signalling and endochondral bone formation in connective tissue. Being a receptor with an extracellular ligand-binding domain and intrinsic intracellular kinase activity, the mutant ALK2 is a druggable target. Although there is no approved cure for FOP yet, a number of clinical trials have been recently initiated, aiming to identify a safe and effective treatment for FOP. Among other targeted approaches, several repurposed drugs have shown promising results. In this review, we describe the molecular mechanisms underlying ALK2 mutation-induced aberrant signalling and ectopic bone formation. In addition, we recapitulate existing in vitro models to screen for novel compounds with a potential application in FOP. We summarize existing therapeutic alternatives and focus on repositioned drugs in FOP, at preclinical and clinical stages.
Collapse
Affiliation(s)
- Francesc Ventura
- Department de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Eleanor Williams
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (E.W.); (A.N.B.)
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| | - Alex N. Bullock
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (E.W.); (A.N.B.)
| | - Peter ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands;
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Cardiovascular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands;
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Cardiovascular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands;
- Correspondence:
| |
Collapse
|
3
|
Kaliya-Perumal AK, Carney TJ, Ingham PW. Fibrodysplasia ossificans progressiva: current concepts from bench to bedside. Dis Model Mech 2020; 13:13/9/dmm046441. [PMID: 32988985 PMCID: PMC7522019 DOI: 10.1242/dmm.046441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heterotopic ossification (HO) is a disorder characterised by the formation of ectopic bone in soft tissue. Acquired HO typically occurs in response to trauma and is relatively common, yet its aetiology remains poorly understood. Genetic forms, by contrast, are very rare, but provide insights into the mechanisms of HO pathobiology. Fibrodysplasia ossificans progressiva (FOP) is the most debilitating form of HO. All patients reported to date carry heterozygous gain-of-function mutations in the gene encoding activin A receptor type I (ACVR1). These mutations cause dysregulated bone morphogenetic protein (BMP) signalling, leading to HO at extraskeletal sites including, but not limited to, muscles, ligaments, tendons and fascia. Ever since the identification of the causative gene, developing a cure for FOP has been a focus of investigation, and studies have decoded the pathophysiology at the molecular and cellular levels, and explored novel management strategies. Based on the established role of BMP signalling throughout HO in FOP, therapeutic modalities that target multiple levels of the signalling cascade have been designed, and some drugs have entered clinical trials, holding out hope of a cure. A potential role of other signalling pathways that could influence the dysregulated BMP signalling and present alternative therapeutic targets remains a matter of debate. Here, we review the recent FOP literature, including pathophysiology, clinical aspects, animal models and current management strategies. We also consider how this research can inform our understanding of other types of HO and highlight some of the remaining knowledge gaps. Summary: Fibrodysplasia ossificans progressiva is a rare disease characterised by progressive heterotopic bone formation. Here, we present a comprehensive summary of the recent literature on this debilitating condition and discuss approaches to solving this clinical puzzle.
Collapse
Affiliation(s)
- Arun-Kumar Kaliya-Perumal
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore
| | - Tom J Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos 138673, Singapore
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore .,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos 138673, Singapore
| |
Collapse
|
4
|
Shi F, Gao J, Zou J, Ying Y, Lin H. Targeting heterotopic ossification by inhibiting activin receptor‑like kinase 2 function (Review). Mol Med Rep 2019; 20:2979-2989. [PMID: 31432174 PMCID: PMC6755183 DOI: 10.3892/mmr.2019.10556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022] Open
Abstract
Heterotopic ossification (HO) refers to the appearance of osteoblasts in soft tissues under pathological conditions, such as trauma or infection. HO arises in an unpredictable way without any recognizable initiation. Activin receptor-like kinase-2 (ALK2) is a type I cell surface receptor for bone morphogenetic proteins (BMPs). The dysregulation of ALK2 signaling is associated with a variety of diseases, including cancer and HO. At present, the prevention and treatment of HO in the clinic predominantly includes nonsteroidal anti-inflammatory drugs (NSAIDs), bisphosphonates and other drug treatments, low-dose local radiation therapy and surgical resection, rehabilitation treatment and physical therapy. However, most of these therapies have adverse effects. These methods do not prevent the occurrence of HO. The pathogenesis of HO is not being specifically targeted; the current treatment strategies target the symptoms, not the disease. These treatments also cannot solve the fundamental problem of the occurrence of HO. Therefore, scholars have been working to develop targeted therapies based on the pathogenesis of HO. The present review focuses on advances in the understanding of the underlying mechanisms of HO, and possible options for the prevention and treatment of HO. In addition, the role of ALK2 in the process of HO is introduced and the progress made towards the targeted inhibition of ALK2 is discussed. The present study aims to offer a platform for further research on possible targets for the prevention and treatment of HO.
Collapse
Affiliation(s)
- Fuli Shi
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Jiayu Gao
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Junrong Zou
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
5
|
Carvalho D, Taylor KR, Olaciregui NG, Molinari V, Clarke M, Mackay A, Ruddle R, Henley A, Valenti M, Hayes A, Brandon ADH, Eccles SA, Raynaud F, Boudhar A, Monje M, Popov S, Moore AS, Mora J, Cruz O, Vinci M, Brennan PE, Bullock AN, Carcaboso AM, Jones C. ALK2 inhibitors display beneficial effects in preclinical models of ACVR1 mutant diffuse intrinsic pontine glioma. Commun Biol 2019; 2:156. [PMID: 31098401 PMCID: PMC6509210 DOI: 10.1038/s42003-019-0420-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a lethal childhood brainstem tumour, with a quarter of patients harbouring somatic mutations in ACVR1, encoding the serine/threonine kinase ALK2. Despite being an amenable drug target, little has been done to-date to systematically evaluate the role of ACVR1 in DIPG, nor to screen currently available inhibitors in patient-derived tumour models. Here we show the dependence of DIPG cells on the mutant receptor, and the preclinical efficacy of two distinct chemotypes of ALK2 inhibitor in vitro and in vivo. We demonstrate the pyrazolo[1,5-a]pyrimidine LDN-193189 and the pyridine LDN-214117 to be orally bioavailable and well-tolerated, with good brain penetration. Treatment of immunodeprived mice bearing orthotopic xenografts of H3.3K27M, ACVR1R206H mutant HSJD-DIPG-007 cells with 25 mg/kg LDN-193189 or LDN-214117 for 28 days extended survival compared with vehicle controls. Development of ALK2 inhibitors with improved potency, selectivity and advantageous pharmacokinetic properties may play an important role in therapy for DIPG patients.
Collapse
Grants
- Wellcome Trust
- C13468/A14078 Cancer Research UK
- 106169/ZZ14/Z Wellcome Trust
- CHILDREN with CANCER UK
- This work was supported by Children with Cancer UK, Abbie’s Army and the DIPG Collaborative, the Lyla Nsouli Foundation and Lucas’ Legacy, the McKenna Claire Foundation and Fondo Alicia Pueyo. The Queensland Children’s Tumour Bank is supported by the Children’s Hospital Foundation. We thank Louise Howell (ICR) for excellent technical assistance. This work was supported by the Xarxa de Bancs de Tumors de Catalunya (XBTC), sponsored by Pla Director d’Oncologia de Catalunya. AMC acknowledges funding from ISCIII-FEDER (CP13/00189). A.B. and A.N.B acknowledge funding from the Amateurs Trust, Roemex Ltd and FOP Friends. The SGC is a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada, Innovative Medicines Initiative (EU/EFPIA) [ULTRA-DD grant no. 115766], Janssen, MSD, Merck KGaA, Novartis Pharma AG, Ontario Ministry of Economic Development and Innovation, Pfizer, São Paulo Research Foundation-FAPESP, Takeda and Wellcome [106169/ZZ14/Z]. This study makes use of data generated by Cancer Research UK Genomics Initiative (C13468/A14078). The authors acknowledge NHS funding to the NIHR Biomedical Research Centre at The Royal Marsden and the ICR.
Collapse
Affiliation(s)
- Diana Carvalho
- Divisions of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG UK
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG UK
| | - Kathryn R. Taylor
- Divisions of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG UK
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG UK
- Stanford University School of Medicine, Stanford, 94305 CA USA
| | | | - Valeria Molinari
- Divisions of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG UK
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG UK
| | - Matthew Clarke
- Divisions of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG UK
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG UK
| | - Alan Mackay
- Divisions of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG UK
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG UK
| | - Ruth Ruddle
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG UK
| | - Alan Henley
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG UK
| | - Melanie Valenti
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG UK
| | - Angela Hayes
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG UK
| | | | - Suzanne A. Eccles
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG UK
| | - Florence Raynaud
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG UK
| | - Aicha Boudhar
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Michelle Monje
- Stanford University School of Medicine, Stanford, 94305 CA USA
| | - Sergey Popov
- Divisions of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG UK
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG UK
- Department of Cellular Pathology, University Hospital of Wales, Cardiff, CF14 4XW UK
| | - Andrew S. Moore
- Diamantina Institute and Child Health Research Centre, The University of Queensland, Brisbane, QLD 4101 Australia
- Oncology Service, Queensland Children’s Hospital, Brisbane, QLD 4029 Australia
| | - Jaume Mora
- Institut de Recerca Sant Joan de Deu, Barcelona, 08950 Esplugues de Llobregat Spain
| | - Ofelia Cruz
- Institut de Recerca Sant Joan de Deu, Barcelona, 08950 Esplugues de Llobregat Spain
| | - Mara Vinci
- Divisions of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG UK
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG UK
- Bambino Gesù Children’s Hospital, Rome, 00165 Roma RM Italy
| | - Paul E. Brennan
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Alex N. Bullock
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ UK
| | | | - Chris Jones
- Divisions of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG UK
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG UK
| |
Collapse
|
6
|
Katagiri T, Tsukamoto S, Nakachi Y, Kuratani M. Recent Topics in Fibrodysplasia Ossificans Progressiva. Endocrinol Metab (Seoul) 2018; 33:331-338. [PMID: 30229572 PMCID: PMC6145951 DOI: 10.3803/enm.2018.33.3.331] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/25/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease that is characterized by the formation of heterotopic bone tissues in soft tissues, such as skeletal muscle, ligament, and tendon. It is difficult to remove such heterotopic bones via internal medicine or invasive procedures. The identification of activin A receptor, type I (ACVR1)/ALK2 gene mutations associated with FOP has allowed the genetic diagnosis of FOP. The ACVR1/ALK2 gene encodes the ALK2 protein, which is a transmembrane kinase receptor in the transforming growth factor-β family. The relevant mutations activate intracellular signaling in vitro and induce heterotopic bone formation in vivo. Activin A is a potential ligand that activates mutant ALK2 but not wild-type ALK2. Various types of small chemical and biological inhibitors of ALK2 signaling have been developed to establish treatments for FOP. Some of these are in clinical trials in patients with FOP.
Collapse
Affiliation(s)
- Takenobu Katagiri
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
- Project of Clinical and Basic Research for FOP, Saitama Medical University, Saitama, Japan.
| | - Sho Tsukamoto
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
- Project of Clinical and Basic Research for FOP, Saitama Medical University, Saitama, Japan
| | - Yutaka Nakachi
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Mai Kuratani
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
7
|
Cappato S, Giacopelli F, Ravazzolo R, Bocciardi R. The Horizon of a Therapy for Rare Genetic Diseases: A "Druggable" Future for Fibrodysplasia Ossificans Progressiva. Int J Mol Sci 2018; 19:ijms19040989. [PMID: 29587443 PMCID: PMC5979309 DOI: 10.3390/ijms19040989] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/21/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic condition characterized by progressive extra-skeletal ossification leading to cumulative and severe disability. FOP has an extremely variable and episodic course and can be induced by trauma, infections, iatrogenic harms, immunization or can occur in an unpredictable way, without any recognizable trigger. The causative gene is ACVR1, encoding the Alk-2 type I receptor for bone morphogenetic proteins (BMPs). The signaling is initiated by BMP binding to a receptor complex consisting of type I and II molecules and can proceed into the cell through two main pathways, a canonical, SMAD-dependent signaling and a p38-mediated cascade. Most FOP patients carry the recurrent R206H substitution in the receptor Glycine-Serine rich (GS) domain, whereas a few other mutations are responsible for a limited number of cases. Mutations cause a dysregulation of the downstream BMP-dependent pathway and make mutated ACVR1 responsive to a non-canonical ligand, Activin A. There is no etiologic treatment for FOP. However, many efforts are currently ongoing to find specific therapies targeting the receptor activity and the downstream aberrant pathway at different levels or targeting cellular components and/or processes that are important in modifying the local environment leading to bone neo-formation.
Collapse
Affiliation(s)
- Serena Cappato
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy.
| | - Francesca Giacopelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy.
| | - Roberto Ravazzolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy.
| | - Renata Bocciardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy.
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy.
| |
Collapse
|
8
|
Kawao N, Yano M, Tamura Y, Okumoto K, Okada K, Kaji H. Role of osteoclasts in heterotopic ossification enhanced by fibrodysplasia ossificans progressiva-related activin-like kinase 2 mutation in mice. J Bone Miner Metab 2016. [PMID: 26204847 DOI: 10.1007/s00774-015-0701-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a disorder of skeletal malformations and progressive heterotopic ossification. The constitutively activating mutation (R206H) of the bone morphogenetic protein type 1 receptor, activin-like kinase 2 (ALK2), is responsible for the pathogenesis of FOP. Although transfection of the causal mutation of FOP into myoblasts enhances osteoclast formation by transforming growth factor-β (TGF-β), the role of osteoclasts in heterotopic ossification is unknown. We therefore examined the effects of alendronate, SB431542 and SB203580 on heterotopic ossification induced by the causal mutation of FOP. Total bone mineral content as well as numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated and alkaline phosphatase (ALP)-positive cells in heterotopic bone were significantly higher in muscle tissues implanted with ALK2 (R206H)-transfected mouse myoblastic C2C12 cells than in the tissues implanted with empty vector-transfected cells in nude mice. Alendronate, an aminobisphosphonate, did not affect total mineral content or numbers of TRAP-positive multinucleated and ALP-positive cells in heterotopic bone, which were enhanced by the implantation of ALK2 (R206H)-transfected C2C12 cells, although it significantly decreased serum levels of cross-linked C-telopeptide of type I collagen, a bone resorption index. Moreover, neither SB431542, an inhibitor of TGF-β receptor type I kinase, nor SB203580, an inhibitor of p38 mitogen-activated protein kinase, affected the increase in heterotopic ossification due to the implantation of ALK2 (R206H)-transfected C2C12 cells. In conclusion, the present study indicates that osteoclast inhibition does not affect heterotopic ossification enhanced by FOP-related mutation.
Collapse
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-8511, Osaka, Japan
| | - Masato Yano
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-8511, Osaka, Japan
| | - Yukinori Tamura
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-8511, Osaka, Japan
| | - Katsumi Okumoto
- Life Science Research Institute, Kinki University, Osaka, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-8511, Osaka, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-8511, Osaka, Japan.
| |
Collapse
|
9
|
A Survey of Strategies to Modulate the Bone Morphogenetic Protein Signaling Pathway: Current and Future Perspectives. Stem Cells Int 2016; 2016:7290686. [PMID: 27433166 PMCID: PMC4940573 DOI: 10.1155/2016/7290686] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/24/2016] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the TGF-β family of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-β pathways.
Collapse
|
10
|
Cappato S, Tonachini L, Giacopelli F, Tirone M, Galietta LJV, Sormani M, Giovenzana A, Spinelli AE, Canciani B, Brunelli S, Ravazzolo R, Bocciardi R. High-throughput screening for modulators of ACVR1 transcription: discovery of potential therapeutics for fibrodysplasia ossificans progressiva. Dis Model Mech 2016; 9:685-96. [PMID: 27125279 PMCID: PMC4920148 DOI: 10.1242/dmm.023929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/22/2016] [Indexed: 01/10/2023] Open
Abstract
The ACVR1 gene encodes a type I receptor of bone morphogenetic proteins (BMPs). Activating mutations in ACVR1 are responsible for fibrodysplasia ossificans progressiva (FOP), a rare disease characterized by congenital toe malformation and progressive heterotopic endochondral ossification leading to severe and cumulative disability. Until now, no therapy has been available to prevent soft-tissue swelling (flare-ups) that trigger the ossification process. With the aim of finding a new therapeutic strategy for FOP, we developed a high-throughput screening (HTS) assay to identify inhibitors of ACVR1 gene expression among drugs already approved for the therapy of other diseases. The screening, based on an ACVR1 promoter assay, was followed by an in vitro and in vivo test to validate and characterize candidate molecules. Among compounds that modulate the ACVR1 promoter activity, we selected the one showing the highest inhibitory effect, dipyridamole, a drug that is currently used as a platelet anti-aggregant. The inhibitory effect was detectable on ACVR1 gene expression, on the whole Smad-dependent BMP signaling pathway, and on chondrogenic and osteogenic differentiation processes by in vitro cellular assays. Moreover, dipyridamole reduced the process of heterotopic bone formation in vivo. Our drug repositioning strategy has led to the identification of dipyridamole as a possible therapeutic tool for the treatment of FOP. Furthermore, our study has also defined a pipeline of assays that will be useful for the evaluation of other pharmacological inhibitors of heterotopic ossification. Summary: We describe the identification of dipyridamole as a potential therapeutic tool for FOP, through a series of in vitro and in vivo assays to screen and validate FDA-approved compounds.
Collapse
Affiliation(s)
- Serena Cappato
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health and CEBR, Università degli Studi di Genova, Genova 16132, Italy
| | - Laura Tonachini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health and CEBR, Università degli Studi di Genova, Genova 16132, Italy
| | - Francesca Giacopelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health and CEBR, Università degli Studi di Genova, Genova 16132, Italy
| | - Mario Tirone
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano 20132, Italy School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Luis J V Galietta
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genova 16147, Italy
| | - Martina Sormani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Anna Giovenzana
- School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Antonello E Spinelli
- Medical Physics Department and Centre for Experimental Imaging, San Raffaele Scientific Institute, Milano 20132, Italy
| | - Barbara Canciani
- Dipartimento di Medicina Sperimentale, Università di Genova & IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova, Italy
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Roberto Ravazzolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health and CEBR, Università degli Studi di Genova, Genova 16132, Italy Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genova 16147, Italy
| | - Renata Bocciardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health and CEBR, Università degli Studi di Genova, Genova 16132, Italy Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genova 16147, Italy
| |
Collapse
|
11
|
Lansoprazole Upregulates Polyubiquitination of the TNF Receptor-Associated Factor 6 and Facilitates Runx2-mediated Osteoblastogenesis. EBioMedicine 2015; 2:2046-61. [PMID: 26844285 PMCID: PMC4703748 DOI: 10.1016/j.ebiom.2015.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 12/11/2022] Open
Abstract
The transcription factor, runt-related transcription factor 2 (Runx2), plays a pivotal role in the differentiation of the mesenchymal stem cells to the osteochondroblast lineages. We found by the drug repositioning strategy that a proton pump inhibitor, lansoprazole, enhances nuclear accumulation of Runx2 and induces osteoblastogenesis of human mesenchymal stromal cells. Systemic administration of lansoprazole to a rat femoral fracture model increased osteoblastogenesis. Dissection of signaling pathways revealed that lansoprazole activates a noncanonical bone morphogenic protein (BMP)-transforming growth factor-beta (TGF-β) activated kinase-1 (TAK1)-p38 mitogen-activated protein kinase (MAPK) pathway. We found by in cellulo ubiquitination studies that lansoprazole enhances polyubiquitination of the TNF receptor-associated factor 6 (TRAF6) and by in vitro ubiquitination studies that the enhanced polyubiquitination of TRAF6 is attributed to the blocking of a deubiquitination enzyme, cylindromatosis (CYLD). Structural modeling and site-directed mutagenesis of CYLD demonstrated that lansoprazole tightly fits in a pocket of CYLD where the C-terminal tail of ubiquitin lies. Lansoprazole is a potential therapeutic agent for enhancing osteoblastic differentiation.
Collapse
|
12
|
Kitoh H, Achiwa M, Kaneko H, Mishima K, Matsushita M, Kadono I, Horowitz JD, Sallustio BC, Ohno K, Ishiguro N. Perhexiline maleate in the treatment of fibrodysplasia ossificans progressiva: an open-labeled clinical trial. Orphanet J Rare Dis 2013; 8:163. [PMID: 24131551 PMCID: PMC4015865 DOI: 10.1186/1750-1172-8-163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/13/2013] [Indexed: 12/03/2022] Open
Abstract
Background Currently, there are no effective medical treatment options to prevent the formation of heterotopic bones in fibrodysplasia ossificans progressiva (FOP). By the drug repositioning strategy, we confirmed that perhexiline maleate (Pex) potentially ameliorates heterotopic ossification in model cells and mice. Here, we conducted a prospective study to assess the efficacy and safety of Pex in the treatment of FOP patients. Methods FOP patients in this open-label single-center study were treated with Pex for a total of 12 months, and followed up for 12 consecutive months after medication discontinuation. The safety of the treatment was assessed regularly by physical and blood examinations. The efficacy of Pex for preventing heterotopic ossifications was evaluated by the presence of flare-ups, measurements of serum bone markers, and changes in the total bone volume calculated by the three-dimensional computed tomography (3D-CT) images. Results Five patients with an average age of 23.4 years were enrolled. Within safe doses of Pex administration in each individual, there were no drug-induced adverse effects during the medication phase. Three patients showed no intense inflammatory reactions during the study period, while two patients had acute flare-ups around the hip joint without evidence of trauma during the medication phase. In addition, one of them became progressively incapable of opening her mouth over the discontinuation phase. Serum levels of alkaline phosphatase (ALP) and bone specific ALP (BAP) were significantly and synchronously increased with the occurrence of flare-ups. Volumetric 3D-CT analysis demonstrated a significant increase in the total bone volume of Case 2 (378 cm3) and Case 3 (833 cm3) during the two-year study period. Conclusions We could not prove the efficacy of oral Pex administration in the prevention of heterotopic ossifications in FOP. Serum levels of ALP and BAP appear to be promising biomarkers for monitoring the development of ectopic ossifications and efficacy of the therapy. Quantification of change in the total bone volume by whole body CT scanning could be a reliable evaluation tool for disease progression in forthcoming clinical trials of FOP.
Collapse
Affiliation(s)
- Hiroshi Kitoh
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|