1
|
Association of Postoperative Neutrophil Lymphocyte Ratio (NLR) and Monocyte Lymphocyte Ratio (MLR) with the Presence of Osteoporosis in Japanese Patients after Hip Fracture Surgery: A Retrospective Cohort Study. J Osteoporos 2021; 2021:5524069. [PMID: 34567509 PMCID: PMC8457983 DOI: 10.1155/2021/5524069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/18/2021] [Accepted: 08/30/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The diagnosis of osteoporosis is based on bone mineral density measurements expressed as a percentage of the young adult mean (YAM) in Japan. Osteoporosis is defined as YAM <70%, and intervention is recommended at this cutoff. Because osteoporosis has a strong association with systemic metabolic disorders, we postulated that patients with YAM <70% had higher inflammatory biomarker concentrations owing to the higher systemic stress compared with YAM >70%. METHOD We retrospectively reviewed 94 patients with low-trauma hip fractures. Blood examinations were performed on postoperative day (POD) 1 and POD 7. We used neutrophil lymphocyte ratio (NLR) and monocyte lymphocyte ratio (MLR) to evaluate postoperative recovery. After dividing the 94 patients into two groups according to a YAM cutoff of 70%, we compared the differences in NLR and MLR. RESULTS On POD 1, patients with YAM >70% had a median NLR of 5.7 and a median MLR of 0.66, which were significantly lower than for patients with YAM <70% (8.8 and 0.9, respectively). Similarly, on POD 7, patients with YAM >70% had a median NLR of 2.0 and a median MLR of 0.31, which were significantly lower than for patients with YAM <70% (3.5 and 0.43, respectively). CONCLUSION A YAM cutoff of 70% is an appropriate intervention threshold regarding postoperative recovery after hip fracture surgery. Mini-Abstract. Patients with YAM >70% showed lower NLR and MLR on POD 1 and POD 7. A YAM cuffoff of 70% is an appropriate intervention threshold regarding postoperative recovery after hip fracture surgery.
Collapse
|
2
|
Nóbrega OT, Morais-Junior GS, Viana NI, Reis ST, Perez DIV, Freitas WM, Sposito AC, Leite KRM, Srougi M. Circulating miR-34a and Bone Mineral Density of Brazilian Very-Old Adults. J Aging Res 2020; 2020:3431828. [PMID: 32377434 PMCID: PMC7196151 DOI: 10.1155/2020/3431828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/27/2020] [Indexed: 11/17/2022] Open
Abstract
The human aging is marked by several body changes, including in bone mineral density (BMD). Research shows that microRNAs are important modulators of bone metabolism. The present research aims to analyze the whole blood concentration of 10 selected microRNAs (miRs) and their association with absolute and relative scores of BMD in specific osseous site of Brazilian very-old adults. Forty noninstitutionalized and apparently healthy, very old (≥80 years) outpatients were eligible for research. Anthropometry, biochemistry, and densitometry measurements were performed along with coronary artery calcification (CAC) scores and tested across total circulating levels of microRNAs. As expected, the relative BMD scores for the lumbosacral region (L1 to S5) and for the femoral head and neck observed in the sample denote weakened bone architecture, compatible with prevalent osteopenia and osteoporosis. In this context, one single significant association was found, and negatively implicated the miR-34a-5p with both absolute (β = -0.36, P=0.001 for BMD) and relative (β = -0.43, P=0.001 for T-score) densitometry indexes of the femoral head (adjusted to sex and physical activity practice), but not with the other sites. No difference in total blood concentrations of the miRs was found according to CAC scores. Our findings indicate greater circulating levels for miR-34a-5p among very-old adults who display the lowest scores of BMD, being a finding consistent with a modest contribution of the miR (along with co-variables) to the mineralization of that site. Attesting clinical relevance of our findings demands forthcoming studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Miguel Srougi
- State University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
3
|
Zhong LN, Zhang YZ, Li H, Fu HL, Lv CX, Jia XJ. Overexpressed miR-196a accelerates osteogenic differentiation in osteoporotic mice via GNAS-dependent Hedgehog signaling pathway. J Cell Biochem 2019; 120:19422-19431. [PMID: 31452264 DOI: 10.1002/jcb.29166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/27/2022]
Abstract
Osteoporosis (OP), a common metabolic bone disease, is accompanied by reduced bone mass, bone mineral density (BMD), as well as microstructure destruction of bone. Previously, microRNA-196a-2 (miR-196a-2) and miR-196a-3p were reported for its involvement in BMD. Herein, this study set out to identify the functional relevance of miR-196a in osteogenic differentiation in osteoporotic mice and explore the associated mechanism by establishing an OP mouse model. Guanine nucleotide binding protein, alpha stimulating (GNAS) was verified as a target gene of miR-196a, which was decreased in OP mice. Furthermore, the bone marrow stromal cells (BMSCs) were then extracted from OP mice and treated with miR-196 mimic/inhibitor or small interfering RNA against GNAS to investigate miR-196a interaction with GNAS and the Hedgehog signaling pathway. BMSCs in OP mice transfected with miR-196a mimic or si-GNAS displayed the elevated expression of Smo, ALP, Runx2, and OPN, as well as bone gla protein and tartrate-resistant acid phosphatase, elevated ALP vitality and bone formation ability as well as reduced expression of GNAS and PTCH. Taken conjointly, overexpression of miR-196a repressed GNAS expression by activating the Hedgehog signaling pathway, thus promoting osteogenic differentiation in mice with OP.
Collapse
Affiliation(s)
- Li-Na Zhong
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Yu-Zhu Zhang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Hong Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Hui-Ling Fu
- Department of Hepatology, Qingdao No.6 People's Hospital, Qingdao, P.R. China
| | - Cheng-Xiu Lv
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Xiu-Juan Jia
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| |
Collapse
|
4
|
Guang M, Yao Y, Zhang L, Huang B, Ma L, Xiang L, Jin J, Gong P. The effects of nerve growth factor on endothelial cells seeded on different titanium surfaces. Int J Oral Maxillofac Surg 2015; 44:1506-13. [PMID: 26338076 DOI: 10.1016/j.ijom.2015.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 02/05/2023]
Abstract
Angiogenesis is critical for peri-implant bone regeneration and osseointegration. Endothelial cells (ECs) play an important role in angiogenesis during the early stage of bone formation. Nerve growth factor (NGF) is also reported to function as an angiogenic growth factor. The effects of NGF on ECs seeded on titanium surfaces are unclear. This study was done to investigate the influence of NGF on peri-implant angiogenesis in vitro and in vivo. We used two different titanium surfaces. ECs seeded on these surfaces were treated with indicated concentrations of NGF or vascular endothelial growth factor (VEGF). Proliferation, differentiation, morphological features, and amounts attached were assessed. Chicken embryo chorioallantoic membrane (CAM) was adopted to evaluate the effect of NGF in vivo. The results showed that NGF could promote EC proliferation on both titanium surfaces (F1d=2.083, P=0.156; F3d=30.857, P=0.0002; F5d=4.440, P=0.041; F7d=11.065, P=0.001). NGF and the SLA surface upregulated mRNA of NGF, TrkA, and p75 expression (FNGF=11.941, P=0.003; FTrkA=28.514, P=0.004; Fp75=7.725, P=0.01). In vivo, the supernatants of the NGF-treated group could promote neovascularization in CAM (F=17.662, P=0.009). This study demonstrated that NGF could enhance EC proliferation, gene expression on different titanium surfaces, and neovascularization in CAM. This provides novel information in relation to the promotion of early dental implant osseointegration.
Collapse
Affiliation(s)
- M Guang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Y Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - L Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - B Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - L Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - L Xiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - J Jin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - P Gong
- Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.
| |
Collapse
|