1
|
Hosain O, Clinkenbeard EL. Adiposity and Mineral Balance in Chronic Kidney Disease. Curr Osteoporos Rep 2024; 22:561-575. [PMID: 39394545 DOI: 10.1007/s11914-024-00884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/13/2024]
Abstract
PURPOSE OF REVIEW Bone homeostasis is balanced between formation and resorption activities and remain in relative equilibrium. Under disease states this process is disrupted, favoring more resorption over formation, leading to significant bone loss and fracture incidence. This aspect is a hallmark for patients with chronic kidney disease mineral and bone disorder (CKD-MBD) affecting a significant portion of the population, both in the United States and worldwide. Further study into the underlying effects of the uremic microenvironment within bone during CKD-MBD are critical as fracture incidence in this patient population not only leads to increased morbidity, but also increased mortality. Lack of bone homeostasis also leads to mineral imbalance contributing to cardiovascular calcifications. One area understudied is the possible involvement of bone marrow adipose tissue (BMAT) during the progression of CKD-MBD. RECENT FINDINGS BMAT accumulation is found during aging and in several disease states, some of which overlap as CKD etiologies. Importantly, research has found presence of BMAT inversely correlates with bone density and volume. Understanding the underlying molecular mechanisms for BMAT formation and accumulation during CKD-MBD may offer a potential therapeutic avenue to improve bone homeostasis and ultimately mineral metabolism.
Collapse
Affiliation(s)
- Ozair Hosain
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN, 46022, USA
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Erica L Clinkenbeard
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
2
|
Elkhouli E, Nagy E, Santos CGS, Barreto FC, Chaer J, Jorgetti V, El-Husseini A. Mixed uremic osteodystrophy: an ill-described common bone pathology in patients with chronic kidney disease. Osteoporos Int 2023; 34:2003-2012. [PMID: 37658999 DOI: 10.1007/s00198-023-06886-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
Renal osteodystrophy (ROD) starts early and progresses with further loss of kidney function in patients with chronic kidney disease (CKD). There are four distinct types of ROD based on undecalcified bone biopsy results. Adynamic bone disease and osteomalacia are the predominant forms of low bone turnover, while hyperparathyroid bone disease and mixed uremic osteodystrophy (MUO) are typically associated with high bone turnover. MUO is a prevalent but poorly described pathology that demonstrates evidence of osteomalacia on top of the high bone formation/resorption. The prevalence of MUO ranges from 5 to 63% among different studies. The pathogenesis of MUO is multi-factorial. Altered phosphate homeostasis, hypocalcemia, vitamin D deficiency, increased FGF-23, interleukins 1 and 6, TNF-α, amyloid, and heavy metal accumulation are the main inducers of MUO. The clinical findings of MUO are usually non-specific. The use of non-invasive testing such as bone turnover markers and imaging techniques might help to suspect MUO. However, it is usually impossible to precisely diagnose this condition without performing bone biopsy. The principal management of MUO is to control the maladaptive hyperparathyroidism along with correcting any nutritional mineral deficiencies that may induce mineralization defect. MUO is a common but still poorly understood bone pathology category; it demonstrates the complexity and difficulty in understanding ROD. A large prospective bone biopsy-based studies are needed for better identification as proper diagnosis and management would improve the outcome of patients with MUO.
Collapse
Affiliation(s)
- Ekbal Elkhouli
- Mansoura pathology department, Mansoura University, Mansoura, Egypt
| | - Eman Nagy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Cassia Gomes S Santos
- Division of Nephrology, Department of Internal Medicine, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Fellype Carvalho Barreto
- Division of Nephrology, Department of Internal Medicine, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Juliana Chaer
- University of São Paulo, Department of Internal Medicine, São Paulo, Brazil
| | - Vanda Jorgetti
- University of São Paulo, Department of Internal Medicine, São Paulo, Brazil
| | - Amr El-Husseini
- Division of Nephrology & Bone and Mineral Metabolism, University of Kentucky, Lexington, USA.
| |
Collapse
|
3
|
Bogdanova E, Sadykov A, Ivanova G, Zubina I, Beresneva O, Semenova N, Galkina O, Parastaeva M, Sharoyko V, Dobronravov V. Mild Chronic Kidney Disease Associated with Low Bone Formation and Decrease in Phosphate Transporters and Signaling Pathways Gene Expression. Int J Mol Sci 2023; 24:ijms24087270. [PMID: 37108433 PMCID: PMC10138582 DOI: 10.3390/ijms24087270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The initial phases of molecular and cellular maladaptive bone responses in early chronic kidney disease (CKD) remain mostly unknown. We induced mild CKD in spontaneously hypertensive rats (SHR) by either causing arterial hypertension lasting six months (sham-operated rats, SO6) or in its' combination with 3/4 nephrectomy lasting two and six months (Nx2 and Nx6, respectively). Sham-operated SHRs (SO2) and Wistar Kyoto rats (WKY2) with a two-month follow-up served as controls. Animals were fed standard chow containing 0.6% phosphate. Upon follow-up completion in each animal, we measured creatinine clearance, urine albumin-to-creatinine ratio, renal interstitial fibrosis, inorganic phosphate (Pi) exchange, intact parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), Klotho, Dickkopf-1, sclerostin, and assessed bone response by static histomorphometry and gene expression profiles. The mild CKD groups had no increase in renal Pi excretion, FGF23, or PTH levels. Serum Pi, Dickkopf-1, and sclerostin were higher in Nx6. A decrease in trabecular bone area and osteocyte number was obvious in SO6. Nx2 and Nx6 had additionally lower osteoblast numbers. The decline in eroded perimeter, a resorption index, was only apparent in Nx6. Significant downregulation of genes related to Pi transport, MAPK, WNT, and BMP signaling accompanied histological alterations in Nx2 and Nx6. We found an association between mild CKD and histological and molecular features suggesting lower bone turnover, which occurred at normal levels of systemic Pi-regulating factors.
Collapse
Affiliation(s)
- Evdokia Bogdanova
- Research Institute of Nephrology, Pavlov University, 197022 Saint Petersburg, Russia
| | - Airat Sadykov
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation Pavlov University, 197022 Saint Petersburg, Russia
| | - Galina Ivanova
- Laboratory of Cardiovascular and Lymphatic Systems, Physiology Pavlov Institute of Physiology, 199034 Saint Petersburg, Russia
| | - Irina Zubina
- Research Institute of Nephrology, Pavlov University, 197022 Saint Petersburg, Russia
| | - Olga Beresneva
- Research Institute of Nephrology, Pavlov University, 197022 Saint Petersburg, Russia
| | - Natalia Semenova
- Research Department of Pathomorphology, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia
| | - Olga Galkina
- Research Institute of Nephrology, Pavlov University, 197022 Saint Petersburg, Russia
| | - Marina Parastaeva
- Research Institute of Nephrology, Pavlov University, 197022 Saint Petersburg, Russia
| | - Vladimir Sharoyko
- Department of General and Bioorganic Chemistry, Pavlov University, 197022 Saint Petersburg, Russia
| | - Vladimir Dobronravov
- Research Institute of Nephrology, Pavlov University, 197022 Saint Petersburg, Russia
| |
Collapse
|
4
|
Bone Disease in Chronic Kidney Disease and Kidney Transplant. Nutrients 2022; 15:nu15010167. [PMID: 36615824 PMCID: PMC9824497 DOI: 10.3390/nu15010167] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) comprises alterations in calcium, phosphorus, parathyroid hormone (PTH), Vitamin D, and fibroblast growth factor-23 (FGF-23) metabolism, abnormalities in bone turnover, mineralization, volume, linear growth or strength, and vascular calcification leading to an increase in bone fractures and vascular disease, which ultimately result in high morbidity and mortality. The bone component of CKD-MBD, referred to as renal osteodystrophy, starts early during the course of CKD as a result of the effects of progressive reduction in kidney function which modify the tight interaction between mineral, hormonal, and other biochemical mediators of cell function that ultimately lead to bone disease. In addition, other factors, such as osteoporosis not apparently dependent on the typical pathophysiologic abnormalities resulting from altered kidney function, may accompany the different varieties of renal osteodystrophy leading to an increment in the risk of bone fracture. After kidney transplantation, these bone alterations and others directly associated or not with changes in kidney function may persist, progress or transform into a different entity due to new pathogenetic mechanisms. With time, these alterations may improve or worsen depending to a large extent on the restoration of kidney function and correction of the metabolic abnormalities developed during the course of CKD. In this paper, we review the bone lesions that occur during both CKD progression and after kidney transplant and analyze the factors involved in their pathogenesis as a means to raise awareness of their complexity and interrelationship.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease-mineral and bone disorder (CKD-MBD) has become a global health crisis with very limited therapeutic options. Dentin matrix protein 1 (DMP1) is a matrix extracellular protein secreted by osteocytes that has generated recent interest for its possible involvement in CKD-MBD pathogenesis. This is a review of DMP1 established regulation and function, and early studies implicating DMP1 in CKD-MBD. RECENT FINDINGS Patients and mice with CKD show perturbations of DMP1 expression in bone, associated with impaired osteocyte maturation, mineralization, and increased fibroblast growth factor 23 (FGF23) production. In humans with CKD, low circulating DMP1 levels are independently associated with increased cardiovascular events. We recently showed that DMP1 supplementation lowers circulating FGF23 levels and improves bone mineralization and cardiac outcomes in mice with CKD. Mortality rates are extremely high among patients with CKD and have only marginally improved over decades. Bone disease and FGF23 excess contribute to mortality in CKD by increasing the risk of bone fractures and cardiovascular disease, respectively. Previous studies focused on DMP1 loss-of-function mutations have established its role in the regulation of FGF23 and bone mineralization. Recent studies show that DMP1 supplementation may fill a crucial therapeutic gap by improving bone and cardiac health in CKD.
Collapse
Affiliation(s)
- Aline Martin
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA.
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
6
|
Sieklucka B, Pawlak D, Domaniewski T, Hermanowicz J, Lipowicz P, Doroszko M, Pawlak K. Serum PTH, PTH1R/ATF4 pathway, and the sRANKL/OPG system in bone as a new link between bone growth, cross-sectional geometry, and strength in young rats with experimental chronic kidney disease. Cytokine 2021; 148:155685. [PMID: 34411988 DOI: 10.1016/j.cyto.2021.155685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/21/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
The progression of chronic kidney disease (CKD) in children is associated with deregulated parathyroid hormone (PTH), growth retardation, and low bone accrual. PTH can cause both catabolic and anabolic impact on bone, and the activating transcription factor 4 (ATF4), a downstream target gene of PTH, is related to its anabolic effect. Osteoprotegerin (OPG) and receptor activator of NF-κB ligand (RANKL) are PTH-dependent cytokines, which may play an important role in the regulation of bone remodeling. This study aimed to evaluate the impact of endogenous PTH and the bone RANKL/OPG system on bone growth, cross-sectional geometry and strength utilizing young, nephrectomized rats. The parameters of cross-sectional geometry were significantly elevated in rats with CKD during the three-month experimental period compared with the controls, and they were strongly associated with serum PTH levels and the expression of parathyroid hormone 1 receptor (PTH1R)/ATF4 genes in bone. Low bone soluble RANKL (sRANKL) levels and sRANKL/OPG ratios were also positively correlated with cross-sectional bone geometry and femoral length. Moreover, the analyzed geometric parameters were strongly related to the biomechanical properties of femoral diaphysis. In summary, the mild increase in endogenous PTH, its anabolic PTH1R/ATF4 axis and PTH-dependent alterations in the bone RANKL/OPG system may be one of the possible mechanisms responsible for the favorable impact on bone growth, cross-sectional geometry and strength in young rats with experimental CKD.
Collapse
Affiliation(s)
- Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Tomasz Domaniewski
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Justyna Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Paweł Lipowicz
- Institute of Biocybernetics and Biomedical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland
| | - Michał Doroszko
- Department of Mechanics and Applied Computer Science, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Kidney disease imparts profound skeletal changes, and unlike many other skeletal diseases, cortical bone is predominantly impacted. Significant advances in medical imaging have led to our ability to now obtain high-resolution three-dimensional views of cortical bone. This paper overviews recent work focused on cortical bone imaging, specifically cortical porosity, in kidney disease. RECENT FINDINGS Although a number of clinical papers have used high-resolution imaging to assess cortical bone porosity, the most impactful work involves longitudinal study designs that have assessed cortical porosity changes over time. These latter studies demonstrate dramatic increases in cortical porosity in untreated individuals and a lack of clear efficacy in reversing porosity with treatment (although data are limited). Those papers providing longitudinal assessment, both clinical and pre-clinical, reveal powerful data about cortical porosity and provide a foundation upon which future studies can build.
Collapse
Affiliation(s)
- Matthew R Allen
- Department of Anatomy and Cell Biology, MS 5035, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA.
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| | - Elizabeth A Swallow
- Department of Anatomy and Cell Biology, MS 5035, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA
| | - Corinne E Metzger
- Department of Anatomy and Cell Biology, MS 5035, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The molecular mechanisms of the bone disease associated with chronic kidney disease (CKD), called renal osteodystrophy (ROD), are poorly understood. New transcriptomics technologies may provide clinically relevant insights into the pathogenesis of ROD. This review summarizes current progress and limitations in the study and treatment of ROD, and in transcriptomics analyses of skeletal tissues. RECENT FINDINGS ROD is characterized by poor bone quality and strength leading to increased risk of fracture. Recent studies indicate permanent alterations in bone cell populations during ROD. Single-cell transcriptomics analyses, successful at identifying specialized cell subpopulations in bone, have not yet been performed in ROD. ROD is a widespread poorly understood bone disease with limited treatment options. Transcriptomics analyses of bone are needed to identify the bone cell subtypes and their role in the pathogenesis of ROD, and to develop adequate diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Aline Martin
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health and Feinberg Cardiovascular and Renal Research Institute, Northwestern University, 320 East Superior Street, Chicago, IL, 60611, USA.
| | - Valentin David
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health and Feinberg Cardiovascular and Renal Research Institute, Northwestern University, 320 East Superior Street, Chicago, IL, 60611, USA.
| |
Collapse
|
9
|
Abstract
Purpose of review Chronic kidney disease (CKD) is a condition associated with bone disease and fibroblast growth factor 23 (FGF23) excess that contributes to cardiovascular mortality. Dentin matrix protein 1 (DMP1) is an established regulator of bone mineralization and FGF23 production in osteocytes. To date, DMP1 function has mainly been studied in the context of hereditary hypophosphatemic rickets diseases. This review describes the role of DMP1 as a potential strong candidate to prevent bone disorders, FGF23 elevation and associated cardiac outcomes in CKD. Recent findings Patients and mice with CKD show impaired osteocyte maturation and impaired regulation of DMP1 and FGF23 in bone. New data suggest that impaired DMP1 production contributes to CKD-associated bone and mineral metabolism disorders and we show that DMP1 repletion improves osteocyte alterations, bone mineralization and partially prevents FGF23 elevation. As a result, mice with CKD show attenuated left ventricular hypertrophy and improved survival. Summary There is an urgent need for new therapeutic strategies to improve bone quality and to lower FGF23 levels in CKD. By preventing osteocyte apoptosis and inhibiting Fgf23 transcription, DMP1 supplementation may represent an ideal approach to improve CKD-associated bone and cardiac outcomes.
Collapse
|
10
|
Matias PJ, Laranjinha I, Azevedo A, Raimundo A, Navarro D, Jorge C, Aires I, Mendes M, Ferreira C, Amaral T, Gil C, Ferreira A. Bone fracture risk factors in prevalent hemodialysis patients. J Bone Miner Metab 2020; 38:205-212. [PMID: 31489503 DOI: 10.1007/s00774-019-01041-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022]
Abstract
Bone fractures are an important cause of morbidity and mortality in hemodialysis (HD) patients. The aim of this study was to quantify the incidence of fractures in a cohort of prevalent HD patients and evaluate its relationship with possible risk factors. We performed a retrospective analysis of 341 patients, since they started HD (median of 51 months). Demographic, clinical, and biochemical parameters as well as vascular calcifications (VC) were evaluated. Fifty-seven episodes of fracture were identified with a median HD vintage of 47 months (incidence rate of 31 per 1000 person-years). Age (p < 0.001), female gender (p < 0.001), lower albumin (p = 0.02), and higher VC score (p < 0.001) were independently associated with increased risk of fracture, while active vitamin D therapy (p = 0.03) was associated with decreased risk. A significantly higher risk of incident fracture was also associated with higher values of bone-specific alkaline phosphatase (bALP) (p = 0.01) and intact parathyroid hormone (iPTH) levels either < 300 pg/mL (p = 0.02) or > 800 pg/mL (p < 0.001) compared with 300-800 pg/mL. In conclusion, bone fracture incidence in HD patients is high and its risk increases with age, female gender, lower serum albumin, and with the presence of more VC. Prevalent HD patients with low or high iPTH levels or increased bALP also had a higher fracture risk. Therapy with active vitamin D seems to have a protective role. Assessment of fracture risk and management in dialysis patients at greatest risk requires further study.
Collapse
Affiliation(s)
- Patrícia João Matias
- Dialysis Unit, Nephrocare Vila Franca de Xira, Praça Bartolomeu Dias, lote 3 r/c, 2600-063, Vila Franca de Xira, Portugal.
- Dialysis Unit, Dialverca, Forte da Casa, Portugal.
- NIDAN, Lisbon, Portugal.
- Faculdade de Ciências Médicas, NOVA Medical School, Lisbon, Portugal.
| | - Ivo Laranjinha
- Dialysis Unit, Dialverca, Forte da Casa, Portugal
- NIDAN, Lisbon, Portugal
- Faculdade de Ciências Médicas, NOVA Medical School, Lisbon, Portugal
| | - Ana Azevedo
- Dialysis Unit, Dialverca, Forte da Casa, Portugal
- NIDAN, Lisbon, Portugal
| | - Ana Raimundo
- Dialysis Unit, Nephrocare Vila Franca de Xira, Praça Bartolomeu Dias, lote 3 r/c, 2600-063, Vila Franca de Xira, Portugal
- NIDAN, Lisbon, Portugal
| | - David Navarro
- Dialysis Unit, Nephrocare Vila Franca de Xira, Praça Bartolomeu Dias, lote 3 r/c, 2600-063, Vila Franca de Xira, Portugal
- NIDAN, Lisbon, Portugal
| | - Cristina Jorge
- Dialysis Unit, Nephrocare Vila Franca de Xira, Praça Bartolomeu Dias, lote 3 r/c, 2600-063, Vila Franca de Xira, Portugal
- Dialysis Unit, Dialverca, Forte da Casa, Portugal
- NIDAN, Lisbon, Portugal
| | - Inês Aires
- Dialysis Unit, Nephrocare Vila Franca de Xira, Praça Bartolomeu Dias, lote 3 r/c, 2600-063, Vila Franca de Xira, Portugal
- Dialysis Unit, Dialverca, Forte da Casa, Portugal
- NIDAN, Lisbon, Portugal
- Faculdade de Ciências Médicas, NOVA Medical School, Lisbon, Portugal
| | - Marco Mendes
- Dialysis Unit, Nephrocare Vila Franca de Xira, Praça Bartolomeu Dias, lote 3 r/c, 2600-063, Vila Franca de Xira, Portugal
- NIDAN, Lisbon, Portugal
| | - Carina Ferreira
- Dialysis Unit, Dialverca, Forte da Casa, Portugal
- NIDAN, Lisbon, Portugal
- Faculdade de Ciências Médicas, NOVA Medical School, Lisbon, Portugal
| | - Tiago Amaral
- Dialysis Unit, Dialverca, Forte da Casa, Portugal
- NIDAN, Lisbon, Portugal
| | - Célia Gil
- Dialysis Unit, Nephrocare Vila Franca de Xira, Praça Bartolomeu Dias, lote 3 r/c, 2600-063, Vila Franca de Xira, Portugal
- Dialysis Unit, Dialverca, Forte da Casa, Portugal
- NIDAN, Lisbon, Portugal
| | - Aníbal Ferreira
- Dialysis Unit, Nephrocare Vila Franca de Xira, Praça Bartolomeu Dias, lote 3 r/c, 2600-063, Vila Franca de Xira, Portugal
- Dialysis Unit, Dialverca, Forte da Casa, Portugal
- NIDAN, Lisbon, Portugal
- Faculdade de Ciências Médicas, NOVA Medical School, Lisbon, Portugal
| |
Collapse
|
11
|
Turky A, El-Edel R, Hassouna M, El-Gayed AA, Noreldin R. Isolation and osteogenic differentiation of umbilical cord mesenchymal stem cells. MENOUFIA MEDICAL JOURNAL 2020; 33:231. [DOI: 10.4103/mmj.mmj_265_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
Rolvien T, Schmidt T, Schmidt FN, von Kroge S, Busse B, Amling M, Barvencik F. Recovery of bone mineralization and quality during asfotase alfa treatment in an adult patient with infantile-onset hypophosphatasia. Bone 2019; 127:67-74. [PMID: 31152801 DOI: 10.1016/j.bone.2019.05.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
Hypophosphatasia (HPP) is a hereditary musculoskeletal disorder characterized by low serum alkaline phosphatase (ALP) activity leading to poor bone mineralization. On a micro-morphological level, this may not only be reflected by an enrichment of osteoid but also a degradation of bone quality. Asfotase alfa is an enzyme replacement therapy that was recently demonstrated to improve bone mineralization as well as clinical status (e.g. growth, muscle strength and quality of life). However, the underlying changes of bone quality parameters on asfotase alfa treatment are currently not known. In the present study, we report a 24-year-old woman with genetically confirmed infantile-onset HPP and recurrent fractures. While the initiated asfotase alfa treatment was followed by rapid clinical improvements (i.e., disappearance of bone marrow edema, increase of muscle strength), the BMD assessed by DXA at the hip and spine increased moderately at two years follow-up. A detailed skeletal assessment using high-resolution peripheral quantitative computed tomography (HR-pQCT) and a high-resolution analysis of two consecutive iliac crest bone biopsies revealed only minor improvements of bone microarchitecture but a remarkable reduction of osteoid parameters. Furthermore, the high mineralization heterogeneity at baseline assessed by quantitative backscattered electron imaging (qBEI) decreased after 2 year of asfotase alfa treatment. Finally, we found an increase in mineral maturation reflected by higher mineral-to-matrix and carbonate-to-phosphate ratios using Fourier transform infrared spectroscopy (FTIR) imaging as well as increased local mechanical properties using reference point indentation (RPI). Taken together, our findings provide evidence for an improvement of bone quality indices beyond the mere reduction of osteoid indices and thereby contribute to the understanding of fracture risk reduction in HPP patients on asfotase alfa treatment.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Tobias Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
13
|
DMP1 prevents osteocyte alterations, FGF23 elevation and left ventricular hypertrophy in mice with chronic kidney disease. Bone Res 2019; 7:12. [PMID: 31044094 PMCID: PMC6483996 DOI: 10.1038/s41413-019-0051-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
During chronic kidney disease (CKD), alterations in bone and mineral metabolism include increased production of the hormone fibroblast growth factor 23 (FGF23) that may contribute to cardiovascular mortality. The osteocyte protein dentin matrix protein 1 (DMP1) reduces FGF23 and enhances bone mineralization, but its effects in CKD are unknown. We tested the hypothesis that DMP1 supplementation in CKD would improve bone health, prevent FGF23 elevations and minimize consequent adverse cardiovascular outcomes. We investigated DMP1 regulation and effects in wild-type (WT) mice and the Col4a3−/− mouse model of CKD. Col4a3−/− mice demonstrated impaired kidney function, reduced bone DMP1 expression, reduced bone mass, altered osteocyte morphology and connectivity, increased osteocyte apoptosis, increased serum FGF23, hyperphosphatemia, left ventricular hypertrophy (LVH), and reduced survival. Genetic or pharmacological supplementation of DMP1 in Col4a3−/− mice prevented osteocyte apoptosis, preserved osteocyte networks, corrected bone mass, partially lowered FGF23 levels by attenuating NFAT-induced FGF23 transcription, and further increased serum phosphate. Despite impaired kidney function and worsened hyperphosphatemia, DMP1 prevented development of LVH and improved Col4a3−/− survival. Our data suggest that CKD reduces DMP1 expression, whereas its restoration represents a potential therapeutic approach to lower FGF23 and improve bone and cardiac health in CKD. Therapies based on a bone growth protein could prevent heart failure in chronic kidney disease (CKD) patients, say researchers in the USA. CKD often causes reduced bone mass and leads to left ventricular hypertrophy, a dangerous thickening of heart muscle related to over-production of the FGF23 hormone. In contrast, the dentin matrix protein DMP1, produced by bone cells, is known to reduce FGF23 levels and enhance bone growth. Aline Martin at Northwestern University in Chicago and co-workers increased the DMP1 levels in CKD mouse models through genetic modification and drugs, and found that this treatment restored regular bone mass, lowered FGF23 levels, reduced the occurrence of heart problems and led to longer lives. The findings suggest that therapies that restore DMP1 have the potential to improve both bone and heart health in CKD patients.
Collapse
|
14
|
Elias RM, Dalboni MA, Coelho ACE, Moysés RMA. CKD-MBD: from the Pathogenesis to the Identification and Development of Potential Novel Therapeutic Targets. Curr Osteoporos Rep 2018; 16:693-702. [PMID: 30291515 DOI: 10.1007/s11914-018-0486-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Although we have seen tremendous advances in the comprehension of CKD-MBD pathophysiology during the last few years, this was not accompanied by a significant change in mortality rate and quality of life. This review will address the traditional and updated pathophysiology of CKD-MBD along with the therapeutic limitations that affect CKD-MBD and proposed alternative treatment targets. RECENT FINDINGS An innovative concept brings the osteocyte to the center of CKD-MBD pathophysiology, in contrast to the traditional view of the skeleton as a target organ for disturbances in calcium, phosphate, parathyroid hormone, and vitamin D. Osteocytes, through the synthesis of FGF-23, sclerostin, among others, are able to interact with other organs, making bone an endocrine organ. Thus, osteocyte dysregulation might be an early event during the course of CKD. This review will revisit general concepts on the pathophysiology of CKD-MBD and discuss new perspectives for its treatment.
Collapse
Affiliation(s)
- Rosilene Motta Elias
- Universidade Nove de Julho, UNINOVE, Rua Iperoig, 690 ap 121, São Paulo, SP, 05016-000, Brazil
- Nephrology Division, HCFCMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Aparecida Dalboni
- Universidade Nove de Julho, UNINOVE, Rua Iperoig, 690 ap 121, São Paulo, SP, 05016-000, Brazil
| | | | - Rosa M A Moysés
- Universidade Nove de Julho, UNINOVE, Rua Iperoig, 690 ap 121, São Paulo, SP, 05016-000, Brazil.
- Nephrology Division, HCFCMUSP, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
15
|
Barreto FDC, Costa CRVD, Reis LMD, Custódio MR. Bone biopsy in nephrology practice. ACTA ACUST UNITED AC 2018; 40:366-374. [PMID: 30525179 PMCID: PMC6534004 DOI: 10.1590/2175-8239-jbn-2017-0012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Renal osteodystrophy (ROD), a group of metabolic bone diseases secondary to chronic kidney disease (CKD), still represents a great challenge to nephrologists. Its management is tailored by the type of bone lesion - of high or low turnover - that cannot be accurately predicted by serum biomarkers of bone remodeling available in daily clinical practice, mainly parathyroid hormone (PTH) and alkaline phosphatase (AP). In view of this limitation, bone biopsy followed by bone quantitative histomorphometry, the gold-standard method for the diagnosis of ROD, is still considered of paramount importance. Bone biopsy has also been recommended for evaluation of osteoporosis in the CKD setting to help physicians choose the best anti-osteoporotic drug. Importantly, bone biopsy is the sole diagnostic method capable of providing dynamic information on bone metabolism. Trabecular and cortical bones may be analyzed separately by evaluating their structural and dynamic parameters, thickness and porosity, respectively. Deposition of metals, such as aluminum and iron, on bone may also be detected. Despite of these unique characteristics, the interest on bone biopsy has declined over the last years and there are currently few centers around the world specialized on bone histomorphometry. In this review, we will discuss the bone biopsy technique, its indications, and the main information it can provide. The interest on bone biopsy should be renewed and nephrologists should be capacitated to perform it as part of their training during medical residency.
Collapse
Affiliation(s)
| | | | - Luciene Machado Dos Reis
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clinicas, Laboratório de Fisiopatologia Renal São Paulo, SP, Brasil
| | - Melani Ribeiro Custódio
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clinicas, Laboratório de Fisiopatologia Renal São Paulo, SP, Brasil
| |
Collapse
|