1
|
Yokota S, Ishizu H, Miyazaki T, Takahashi D, Iwasaki N, Shimizu T. Osteoporosis, Osteoarthritis, and Subchondral Insufficiency Fracture: Recent Insights. Biomedicines 2024; 12:843. [PMID: 38672197 PMCID: PMC11048726 DOI: 10.3390/biomedicines12040843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The increased incidence of osteoarthritis (OA), particularly knee and hip OA, and osteoporosis (OP), owing to population aging, have escalated the medical expense burden. Osteoarthritis is more prevalent in older women, and the involvement of subchondral bone fragility spotlights its association with OP. Notably, subchondral insufficiency fracture (SIF) may represent a more pronounced condition of OA pathophysiology. This review summarizes the relationship between OA and OP, incorporating recent insights into SIF. Progressive SIF leads to joint collapse and secondary OA and is associated with OP. Furthermore, the thinning and fragility of subchondral bone in early-stage OA suggest that SIF may be a subtype of OA (osteoporosis-related OA, OPOA) characterized by significant subchondral bone damage. The high bone mineral density observed in OA may be overestimated due to osteophytes and sclerosis and can potentially contribute to OPOA. The incidence of OPOA is expected to increase along with population aging. Therefore, prioritizing OP screening, early interventions for patients with early-stage OA, and fracture prevention measures such as rehabilitation, fracture liaison services, nutritional management, and medication guidance are essential.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (S.Y.); (H.I.); (T.M.); (D.T.); (N.I.)
| |
Collapse
|
2
|
Evans LAE, Pitsillides AA. Structural clues to articular calcified cartilage function: A descriptive review of this crucial interface tissue. J Anat 2022; 241:875-895. [PMID: 35866709 PMCID: PMC9482704 DOI: 10.1111/joa.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
Articular calcified cartilage (ACC) has been dismissed, by some, as a remnant of endochondral ossification without functional relevance to joint articulation or weight-bearing. Recent research indicates that morphologic and metabolic ACC features may be important, reflecting knee joint osteoarthritis (OA) predisposition. ACC is less investigated than neighbouring joint tissues, with its component chondrocytes and mineralised matrix often being either ignored or integrated into analyses of hyaline articular cartilage and subchondral bone tissue respectively. Anatomical variation in ACC is recognised between species, individuals and age groups, but the selective pressures underlying this variation are unknown. Consequently, optimal ACC biomechanical features are also unknown as are any potential locomotory roles. This review collates descriptions of ACC anatomy and biology in health and disease, with a view to revealing its structure/function relationship and highlighting potential future research avenues. Mouse models of healthy and OA joint ageing have shown disparities in ACC load-induced deformations at the knee joint. This raises the hypothesis that ACC response to locomotor forces over time may influence, or even underlie, the bony and hyaline cartilage symptoms characteristic of OA. To effectively investigate the ACC, greater resolution of joint imaging and merging of hierarchical scale data will be required. An appreciation of OA as a 'whole joint disease' is expanding, as is the possibility that the ACC may be a key player in healthy ageing and in the transition to OA joint pathology.
Collapse
Affiliation(s)
- Lucinda A. E. Evans
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of LondonLondonUK
| | - Andrew A. Pitsillides
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of LondonLondonUK
| |
Collapse
|
3
|
Kaspiris A, Chronopoulos E, Vasiliadis E, Khaldi L, Melissaridou D, Iliopoulos ID, Savvidou OD. Sex, but not age and bone mass index positively impact on the development of osteochondral micro‐defects and the accompanying cellular alterations during osteoarthritis progression. Chronic Dis Transl Med 2022; 8:41-50. [PMID: 35620158 PMCID: PMC9128565 DOI: 10.1002/cdt3.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background Osteoarthritis (ΟΑ) is characterized by cartilage breakdown and subchondral sclerosis. Micro‐fractures of the calcified tissues have been, also, detected, but their exact role has not been elucidated yet. This study was to examine the frequency of cracks during OA progression and to correlate them with the underlying cellular modifications and matrix metalloproteinase‐2 (MMP‐2) expression using histological/immunohistological methods. Methods Overall, 20 patients and 3 controls (9 specimens per patient), aged 60–89 years, diagnosed with hip/knee OA were included. The development of cracks was examined in 138 sections, whereas the expression of MMP‐2 was examined in 69 additional sections. Results Based on Mankin score, three groups of OA severity were analyzed: Group I (mild) was constituted of sections with score 1–5 while Groups II (moderate) and III (severe) with score 6–7 and greater or equal to 8, respectively. Demographic characteristics did not reveal any association between the number of microdefects and age or body mass index (BMI). Cartilage micro‐cracks were increased during moderate and severe OA, while bone cracks were increased during mild and severe OA. In knee OA, cartilage cracks were not correlated with Mankin score, whereas in hip OA they appeared association with severity score. Bone cracks were positively correlated with matrix apoptotic osteocytes and osteoblastic cells, but not with osteoclasts. MMP‐2 immunostaining was increasing by OA severity in the osteochondral unit. Similarly, MMP‐2 was expressed on the microcracks’ wall mainly in Group III. Conclusion Our data displayed that bone cracks during primary OA stages, represent an early adaptative mechanism aiming to maintain cartilage integrity. Accumulation of bone defects and concomitant increase of apoptotic osteocytes activated an abnormal remodeling due to osteoblastic activity, in which MMP‐2 played a pivotal role, leading to subchondral sclerosis promoting further osteochondral deformities.
Collapse
Affiliation(s)
- Angelos Kaspiris
- Laboratory of Molecular Pharmacology, Division for Orthopaedic Research, School of Health Sciences University of Patras Patras Greece
| | - Efstathios Chronopoulos
- Second Department of Orthopaedic Surgery, School of Medicine National and Kapodistrian University of Athens, “Konstantopoulio” General Hospital Athens Greece
| | - Elias Vasiliadis
- Third Department of Orthopaedic Surgery “KAT” General Hospital and Medical School University of Athens Athens Greece
| | - Lubna Khaldi
- Department of Pathology “Agios Savvas” Athens Cancer Hospital–NHS Athens Greece
| | - Dimitra Melissaridou
- First Department of Orthopaedic Surgery, School of Medicine National and Kapodistrian University of Athens, “ATTIKON” University General Hospital Athens Greece
| | - Ilias D. Iliopoulos
- Department of Orthopaedic Surgery, “Rion” University Hospital and Medical School, School of Health Sciences University of Patras Patras Greece
| | - Olga D. Savvidou
- First Department of Orthopaedic Surgery, School of Medicine National and Kapodistrian University of Athens, “ATTIKON” University General Hospital Athens Greece
| |
Collapse
|
4
|
Ries C, Boese CK, Stürznickel J, Koehne T, Hubert J, Pastor MF, Hahn M, Meier SL, Beil FT, Püschel K, Amling M, Rolvien T. Age-related changes of micro-morphological subchondral bone properties in the healthy femoral head. Osteoarthritis Cartilage 2020; 28:1437-1447. [PMID: 32795512 DOI: 10.1016/j.joca.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Alterations in the subchondral bone (SCB) are likely to play a decisive role in the development of osteoarthritis (OA). Since aging represents a major risk factor for OA, the aim of the current study was to assess the microstructural changes of the subchondral bone in the femoral head during aging. DESIGN Femoral heads and matched iliac crest biopsies of 80 individuals (age 21-99 years) were collected post-mortem. The bone microstructure of the subchondral trabecular bone as well as the cartilage thickness (Cg.Th) and subchondral bone plate thickness (SCB.Th) were quantified using histomorphometry. The different subregions of the SCB were also imaged by quantitative backscattered electron imaging (qBEI) in 31 aged cases to assess the bone mineral density distribution (BMDD). RESULTS The detected linear decline of bone volume per tissue volume (BV/TV) in the femoral head with aging (Slope, 95% CI: -0.208 to -0.109 %/yr.) was primarily due to a decrease in trabecular thickness (Tb.Th, Slope, 95% CI: -0.774 to -0.343 μm/yr). While SCB.Th declined with aging (Slope, 95% CI: -1.941 to -0.034 μm/yr), no changes in Cg.Th were detected (Slope, 95% CI: -0.001 to 0.005 mm/yr). The matrix mineralization of the subchondral bone was lower compared to the trabecular bone and also decreased with aging. CONCLUSIONS Regular changes of the SCB during aging primarily involve a reduction of Tb.Th, SCB.Th and matrix mineralization. Our findings facilitate future interpretations of early and late OA specimens to decipher the role of the SCB in OA pathogenesis.
Collapse
Affiliation(s)
- C Ries
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| | - C K Boese
- Department of Orthopaedic and Trauma Surgery, University Hospital of Cologne, Cologne, Germany
| | - J Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - T Koehne
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Department of Orthodontics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - J Hubert
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M-F Pastor
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Department of Orthopedic Surgery, Medical School Hannover, DIAKOVERE Annastift, Hannover, Germany
| | - M Hahn
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - S L Meier
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - F T Beil
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - K Püschel
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - T Rolvien
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| |
Collapse
|
5
|
Hansen LJ, Bloch SL, Frisch T, Sørensen MS. Microcrack surface density in the human otic capsule: An unbiased stereological quantification. Anat Rec (Hoboken) 2020; 304:961-967. [PMID: 33040475 DOI: 10.1002/ar.24535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/06/2020] [Accepted: 08/14/2020] [Indexed: 11/07/2022]
Abstract
Bone is continuously remodeled to repair and strengthen degenerative bone with accumulating dead osteocytes and microfractures. Inner ear osteoprotegerin (OPG)-mediated inhibition of otic capsular bone remodeling causes excessive perilabyrinthine bone degeneration. Consequently, microcracks accumulate around the inner ear. Microcracks cause osteocyte apoptosis and may disrupt the canalicular network connecting osteocytes. Despite their linear microscopic appearance, microcracks are three-dimensional disruption planes and represent surface areas inside a tissue space. With an elevated microcrack burden the number of disconnected osteocytes is expected to increase. This may prove relevant to ongoing research in otic focal pathologies like otosclerosis. Therefore, an unbiased quantification of the microcrack surface density (mm2 /mm3 ) in the human otic capsule is essential. In this study unbiased stereology was applied to undecalcified bulk stained human temporal bones to demonstrate its feasibility in describing the three-dimensional reality behind two dimensional observations of microcracks. A total of 28 human temporal bones and five ribs were bulk stained in basic fuchsin, serially sectioned and hand-ground to a thickness of 80-120 μm. Both horizontal and vertical sections were produced and compared. This study showed that surface density of microcracks was significantly higher around the inner ear compared to ribs. Furthermore, no significant difference in microcrack surface density between horizontal and vertical sections in the temporal bone was demonstrated.
Collapse
Affiliation(s)
- Lars Juul Hansen
- Department of Otorhinolaryngology Head and Neck Surgery and Audiology, Otopathology Laboratory, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Sune Land Bloch
- Department of Otorhinolaryngology Head and Neck Surgery and Audiology, Otopathology Laboratory, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Thomas Frisch
- Department of Otorhinolaryngology Head and Neck Surgery and Audiology, Otopathology Laboratory, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Mads Sølvsten Sørensen
- Department of Otorhinolaryngology Head and Neck Surgery and Audiology, Otopathology Laboratory, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
He Z, Chu L, Liu X, Han X, Zhang K, Yan M, Li X, Yu Z. Differences in subchondral trabecular bone microstructure and finite element analysis-based biomechanical properties between osteoporosis and osteoarthritis. J Orthop Translat 2020; 24:39-45. [PMID: 32642427 PMCID: PMC7320230 DOI: 10.1016/j.jot.2020.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 01/06/2023] Open
Abstract
Background/Objective The microstructure of the subchondral trabecular bone, including the composition and distribution of plates and rods, has an important influence on the disease progression and mechanical properties of osteoarthritis (OA) and osteoporosis (OP). We aimed to determine whether differences in plates and rods influence the variations in the quantities and qualities of the subchondral trabecular bone between OA and OP. Materials and methods Thirty-eight femoral head samples [OA, n = 13; OP, n = 17; normal control (NC), n = 8] were collected from male patients undergoing total hip arthroplasty. They were scanned using microcomputed tomography, and subchondral trabecular structures were analysed using individual trabecular segmentation. Micro-finite element analysis (μFEA) was applied to assess the mechanical property of the trabecular bone. Cartilage changes were evaluated by using histological assessment. Analysis of variance was used to compare intergroup differences in structural and mechanical properties and cartilage degradation. Pearson analysis was used to evaluate the relationship between the trabecula microstructure and biomechanical properties. Results Compared with the OP and NC group, there was serious cartilage damage in the OA group. With respect to the microstructure results, the OA group had the highest plate and rod trabecular microstructures including number and junction density among the three groups. For the mechanical properties detected via μFEA, the OA group had higher stiffness and failure load than did the OP group. Pearson analysis revealed that compared with OP, OA had a higher number of microstructure parameters (e.g., rod bone volume fraction and rod trabecular number) that were positively correlated with its mechanical property. Conclusions Compared with OP, the OA subchondral bone has both increased plate and rod microarchitecture and has more microstructures positively related with its mechanical property. These differences may help explain the variation in mechanical properties between these bone diseases. The translational potential of this article Our findings suggested that changes in the plates and rods of the subchondral trabecular bone play a critical role in OA and OP progression and that the improvement of the subchondral trabecular bone may be a promising treatment approach.
Collapse
Affiliation(s)
- Zihao He
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Linyang Chu
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200011, China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, The Artificial Joint Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Xuequan Han
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Mengning Yan
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaofeng Li
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, The Artificial Joint Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- Corresponding author.
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Corresponding author.
| |
Collapse
|