1
|
Sharma S, Kumar S, Tomar MS, Chauhan D, Kulkarni C, Rajput S, Sadhukhan S, Porwal K, Guha R, Shrivastava A, Gayen JR, Kumar N, Chattopadhyay N. Multiscale effects of the calcimimetic drug, etelcalcetide on bone health of rats with secondary hyperparathyroidism induced by chronic kidney disease. Bone 2024; 185:117126. [PMID: 38777312 DOI: 10.1016/j.bone.2024.117126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Chronic kidney disease-induced secondary hyperparathyroidism (CKD-SHPT) heightens fracture risk through impaired mineral homeostasis and elevated levels of uremic toxins (UTs), which in turn enhance bone remodeling. Etelcalcetide (Etel), a calcium-sensing receptor (CaSR) agonist, suppresses parathyroid hormone (PTH) in hyperparathyroidism to reduce excessive bone resorption, leading to increased bone mass. However, Etel's effect on bone quality, chemical composition, and strength is not well understood. To address these gaps, we established a CKD-SHPT rat model and administered Etel at a human-equivalent dose concurrently with disease induction. The effects on bone and mineral homeostasis were compared with a CKD-SHPT (vehicle-treated group) and a control group (rats without SHPT). Compared with vehicle-treated CKD-SHPT rats, Etel treatment improved renal function, reduced circulating UT levels, improved mineral homeostasis parameters, decreased PTH levels, and prevented mineralization defects. The upregulation of mineralization-promoting genes by Etel in CKD-SHPT rats might explain its ability to prevent mineralization defects. Etel preserved both trabecular and cortical bones with attendant suppression of osteoclast function, besides increasing mineralization. Etel maintained the number of viable osteocytes to the control level, which could also contribute to its beneficial effects on bone. CKD-SHPT rats displayed increased carbonate substitution of matrix and mineral, decreased crystallinity, mineral-to-matrix ratio, and collagen maturity, and these changes were mitigated by Etel. Further, Etel treatment prevented CKD-SHPT-induced deterioration in bone strength and mechanical behavior. Based on these findings, we conclude that in CKD-SHPT rats, Etel has multiscale beneficial effects on bone that involve remodeling suppression, mineralization gene upregulation, and preservation of osteocytes.
Collapse
Affiliation(s)
- Shivani Sharma
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saroj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, India
| | - Divya Chauhan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India
| | - Chirag Kulkarni
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swati Rajput
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sreyanko Sadhukhan
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Konica Porwal
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India
| | - Rajdeep Guha
- Division of Laboratory Animal Facility, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, India
| | - Jiaur R Gayen
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Yamashita S, Kondo Y, Watanabe C, Nodai T, Munemasa T, Mukaibo T, Masaki C, Shibata Y, Hosokawa R. Chronic kidney disease compromises structural and mechanical properties of maxillary cortical bone in a rat model. J Prosthodont Res 2024; 68:264-272. [PMID: 37211410 DOI: 10.2186/jpr.jpr_d_23_00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
PURPOSE This study aimed to investigate the effects of chronic kidney disease (CKD) on the structural and mechanical properties of the maxillary and mandibular cortical bone. METHODS The maxillary and mandibular cortical bones from CKD model rats were used in this study. CKD-induced histological, structural, and micro-mechanical alterations were assessed using histological analyses, micro-computed tomography (CT), bone mineral density (BMD) measurements, and nanoindentation tests. RESULTS Histological analyses indicated that CKD caused an increase in the number of osteoclasts and a decrease in the number of osteocytes in the maxilla. Micro-CT analysis revealed that CKD induced a void volume/cortical volume (%) increase, which was more remarkable in the maxilla than in the mandible. CKD also significantly decreased the BMD in the maxilla. In the nanoindentation stress-strain curve, the elastic-plastic transition point and loss modulus were lower in the CKD group than that in the control group in the maxilla, suggesting that CKD increased micro fragility of the maxillary bone. CONCLUSIONS CKD affected bone turnover in the maxillary cortical bone. Furthermore, the maxillary histological and structural properties were compromised, and micro-mechanical properties, including the elastic-plastic transition point and loss modulus, were altered by CKD.
Collapse
Affiliation(s)
- Sotaro Yamashita
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Japan
| | - Yusuke Kondo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Japan
| | - Chie Watanabe
- Department of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Tomotaka Nodai
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Japan
| | - Takashi Munemasa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Japan
| | - Taro Mukaibo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Japan
| | - Chihiro Masaki
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Japan
| | - Yo Shibata
- Department of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Ryuji Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Japan
| |
Collapse
|
3
|
Chen B, Wang L, Pu S, Guo L, Chai N, Sun X, Tang X, Ren Y, He J, Hao N. Unveiling potential drug targets for hyperparathyroidism through genetic insights via Mendelian randomization and colocalization analyses. Sci Rep 2024; 14:6435. [PMID: 38499600 PMCID: PMC10948885 DOI: 10.1038/s41598-024-57100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024] Open
Abstract
Hyperparathyroidism (HPT) manifests as a complex condition with a substantial disease burden. While advances have been made in surgical interventions and non-surgical pharmacotherapy for the management of hyperparathyroidism, radical options to halt underlying disease progression remain lacking. Identifying putative genetic drivers and exploring novel drug targets that can impede HPT progression remain critical unmet needs. A Mendelian randomization (MR) analysis was performed to uncover putative therapeutic targets implicated in hyperparathyroidism pathology. Cis-expression quantitative trait loci (cis-eQTL) data serving as genetic instrumental variables were obtained from the eQTLGen Consortium and Genotype-Tissue Expression (GTEx) portal. Hyperparathyroidism summary statistics for single nucleotide polymorphism (SNP) associations were sourced from the FinnGen study (5590 cases; 361,988 controls). Colocalization analysis was performed to determine the probability of shared causal variants underlying SNP-hyperparathyroidism and SNP-eQTL links. Five drug targets (CMKLR1, FSTL1, IGSF11, PIK3C3 and SLC40A1) showed significant causation with hyperparathyroidism in both eQTLGen and GTEx cohorts by MR analysis. Specifically, phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) and solute carrier family 40 member 1 (SLC40A1) showed strong evidence of colocalization with HPT. Multivariable MR and Phenome-Wide Association Study analyses indicated these two targets were not associated with other traits. Additionally, drug prediction analysis implies the potential of these two targets for future clinical applications. This study identifies PIK3C3 and SLC40A1 as potential genetically proxied druggable genes and promising therapeutic targets for hyperparathyroidism. Targeting PIK3C3 and SLC40A1 may offer effective novel pharmacotherapies for impeding hyperparathyroidism progression and reducing disease risk. These findings provide preliminary genetic insight into underlying drivers amenable to therapeutic manipulation, though further investigation is imperative to validate translational potential from preclinical models through clinical applications.
Collapse
Affiliation(s)
- Bohong Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaan'xi Province, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaan'xi Province, China
| | - Shengyu Pu
- Department of Breast Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, 277 Yanta Western Rd., Xi'an 710061, Shaan'xi Province, China
| | - Li Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaan'xi Province, China
| | - Na Chai
- Department of Breast Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, 277 Yanta Western Rd., Xi'an 710061, Shaan'xi Province, China
| | - Xinyue Sun
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaan'xi Province, China
| | - Xiaojiang Tang
- Department of Breast Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, 277 Yanta Western Rd., Xi'an 710061, Shaan'xi Province, China
| | - Yu Ren
- Department of Breast Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, 277 Yanta Western Rd., Xi'an 710061, Shaan'xi Province, China
| | - Jianjun He
- Department of Breast Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, 277 Yanta Western Rd., Xi'an 710061, Shaan'xi Province, China.
| | - Na Hao
- Department of Breast Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, 277 Yanta Western Rd., Xi'an 710061, Shaan'xi Province, China.
| |
Collapse
|
4
|
Qiu W, Zhou G. Observation of the efficacy of parathyroidectomy for secondary hyperparathyroidism in hemodialysis patients: a retrospective study. BMC Surg 2023; 23:234. [PMID: 37568150 PMCID: PMC10422825 DOI: 10.1186/s12893-023-02143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
PURPOSE Parathyroidectomy (PTX) is commonly performed as a treatment for secondary hyperparathyroidism (SHPT) in patients with end-stage renal disease (ESRD). We aimed to evaluate the efficacy of PTX in patients with SHPT who underwent hemodialysis. METHODS This retrospective study analyzed the clinical treatment of 80 hemodialysis patients with SHPT who underwent either total PTX with forearm auto transplantation (TPTX + AT) or subtotal parathyroidectomy (SPTX). We compared the changes in biochemical indices before and after surgery as well as the attenuation of intact parathyroid hormone (iPTH) in the TPTX and SPTX groups. We also evaluated clinical symptoms and quality of life using the Visual Analog Scale (VAS) and the Short Form-36 Questionnaire (SF-36) before and at 3, 6, and 12 months after surgery. RESULTS Serum iPTH and serum phosphorus levels decreased significantly after surgery in 80 patients with SHPT (P < 0.05). Within one month of surgery, there was a difference in iPTH levels between the TPTX + AT and SPTH groups, but there was no difference over time. Patients experienced significant improvement in their clinical symptoms of restless leg syndrome, skin itching, bone pain, and joint pain at 1 week post operation (P < 0.001). Quality of life significantly improved after surgery, as assessed by SF-36 scores (P < 0.05). Hypocalcemia was the most common postoperative complication, occurring in 35% of patients. Within the first 12 months post surgery, 5 patients had a recurrence. CONCLUSION PTX is effective in rapidly reducing iPTH levels, improving calcium and phosphorus metabolism disorders, and enhancing patients' quality of life by safely and effectively relieving clinical symptoms.
Collapse
Affiliation(s)
- Wenqiang Qiu
- Department of General Surgery, Jinzhou Medical University Postgraduate Training Base (Liaoyang Central Hospital), Liaoyang, 111000, China
| | - Ge Zhou
- Department of General Surgery, Liaoyang Central Hospital, Liaoyang, China.
| |
Collapse
|
5
|
Tong X, Turunen MJ, Burton IS, Kröger H. Generalized Uncoupled Bone Remodeling Associated With Delayed Healing of Fatigue Fractures. JBMR Plus 2022; 6:e10598. [PMID: 35309868 PMCID: PMC8914151 DOI: 10.1002/jbm4.10598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 11/09/2022] Open
Abstract
Fatigue fractures in bones are common injuries with load‐bearing activities, during which the remodeling aimed at removing microdamage has been suggested to play a role in increasing related fracture risk. Much attention has been given to the uncoupling between osteoclastic bone resorption and osteoblastic osteogenesis in fatigue fracture cases; however, the underlying pathophysiologic mechanisms of impaired fracture healing are yet unknown. Here we report multiple fatigue fractures in a physically active woman receiving contraceptive pills for years. Her fracture healing was remarkably slow, although she has been otherwise healthy. The patient underwent bone biopsy of the iliac crest that showed remarkable peritrabecular fibrosis with increased osteoclastic bone resorption combined with relatively low bone formation. Analysis of bone biochemical composition revealed a more complex picture: First, notable declines in bone mineral content–based parameters indicating abnormal mineralization were evident in both cancellous and cortical bone. Second, there was elevation in mineral crystal size, perfection, and collagen maturity in her bone tissues from different anatomical sites. To our knowledge, this is the first report showing generalized uncoupling in bone remodeling, increased peritrabecular fibrosis, and bone compositional changes associated with delayed healing of fatigue fractures. These results may explain delayed healing of fatigue and stress fractures. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xiaoyu Tong
- Kuopio Musculoskeletal Research Unit (KMRU), Clinical Research Centre, Institute of Clinical Medicine, University of Eastern Finland Kuopio Finland
| | - Mikael J Turunen
- Department of Applied Physics University of Eastern Finland Kuopio Finland
| | - Inari S Burton
- Kuopio Musculoskeletal Research Unit (KMRU), Clinical Research Centre, Institute of Clinical Medicine, University of Eastern Finland Kuopio Finland
| | - Heikki Kröger
- Kuopio Musculoskeletal Research Unit (KMRU), Clinical Research Centre, Institute of Clinical Medicine, University of Eastern Finland Kuopio Finland
- Department of Orthopaedics, Traumatology, and Hand Surgery Kuopio University Hospital Kuopio Finland
| |
Collapse
|
6
|
Abstract
Osteocytes are dendritic cells in the mineralized bone matrix that descend from osteoblasts. They play critical roles in controlling bone mass through the production of sclerostin, an inhibitor of bone formation, and receptor activator of nuclear factor κ B ligand, an inducer of osteoblastic bone resorption. Osteocytes also govern phosphate homeostasis through the production of fibroblast growth factor 23 (FGF23), which lowers serum phosphate levels by increasing renal phosphate excretion and reducing the synthesis of 1,25-dihydroxyvitamin D (1,25(OH)2D), an active metabolite of vitamin D. The production of FGF23 in osteocytes is regulated by various local and systemic factors. Phosphate-regulating gene homologous to endopeptidase on X chromosome (PHEX), dentin matrix protein 1 (DMP1), and family with sequence similarity 20, member C function as local negative regulators of FGF23 production in osteocytes, and their inactivation causes the overproduction of FGF23 and hypophosphatemia. Sclerostin has been suggested to regulate the production of FGF23, which may link the two functions of osteocytes, namely, the control of bone mass and regulation of phosphate homeostasis. Systemic regulators of FGF23 production include 1,25(OH)2D, phosphate, parathyroid hormone, insulin, iron, and inflammation. Therefore, the regulation of FGF23 in osteocytes is complex and multifactorial. Recent mouse studies have suggested that decreases in serum phosphate levels from youth to adulthood are caused by growth-related increases in FGF23 production by osteocytes, which are associated with the down-regulation of Phex and Dmp1.
Collapse
|
7
|
Zhang LX, Zhang B, Liu XY, Wang ZM, Qi P, Zhang TY, Zhang Q. Advances in the treatment of secondary and tertiary hyperparathyroidism. Front Endocrinol (Lausanne) 2022; 13:1059828. [PMID: 36561571 PMCID: PMC9763452 DOI: 10.3389/fendo.2022.1059828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Secondary hyperparathyroidism (SHPT) and tertiary hyperparathyroidism (THPT) are common and complicated clinical endocrine diseases. The parathyroid glands maintain endocrine homeostasis by secreting parathyroid hormone to regulate blood calcium levels. However, structural alterations to multiple organs and systems occur throughout the body due to hyperactivity disorder in SHPT and THPT. This not only decreases the patients' quality of life, but also affects mortality. Since current treatments for these diseases remains unclear, we aimed to develop a comprehensive review of advances in the treatment of SHPT and THPT according to the latest relevant researches.
Collapse
Affiliation(s)
- Li-Xi Zhang
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Ben Zhang
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Xu-Yao Liu
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Zi-Ming Wang
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Peng Qi
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Tong-Yue Zhang
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Qiang Zhang
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Osuna LGG, Soares CJ, Vilela ABF, Irie MS, Versluis A, Soares PBF. Influence of bone defect position and span in 3-point bending tests: experimental and finite element analysis. Braz Oral Res 2020; 35:e001. [PMID: 33206774 DOI: 10.1590/1807-3107bor-2021.vol35.0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
Three-point bending test is the most common mechanical test used for quantifying the biomechanical quality of bone tissue and bone healing in small animals. However, there is a lack of standardization for evaluation of bone repair by cortical perforation. The aim of this study was to determine the influence of bone defect position in the proximal metaphysis of rat tibias during load application and different span configuration on the three-point bending test outcomes. Cortical defects with 1.6 mm diameter were created at a standardized location on the medial surface of 60 tibias of male Wistar rats. The animals were euthanized 7 days after surgery. Five specimens were used to create 3D models for finite element analysis using high-resolution micro-CT images. Two spans (6 and 10mm) and three positions of the bone defect in relation to the load application (upward, frontal and downward) were evaluated experimentally (n = 10) and in finite element analysis (n = 5). Maximum load (N) and stiffness (N/mm) were statistically analyzed with 2-way ANOVA and Tukey test (α = 0.05). The results demonstrated that span and orientation of the bone defect significantly influenced the fracture pattern, stress distribution and force versus displacement relation. Therefore, reliable outcome can be achieved creating the bone defect at 8 mm from the extremity of the proximal epiphysis; placing a 10 mm distance span and downward facing defect position to allow a better distribution of stress and more fracture patterns that reached the bone defect target area with less intra-group variability.
Collapse
Affiliation(s)
- Luis Gustavo Gonzalez Osuna
- Universidade Federal de Uberlândia - UFU, Department of Periodontology and Implantology, Uberlândia, MG, Brazil
| | - Carlos José Soares
- Universidade Federal de Uberlândia - UFU, Department of Operative Dentistry and Dental Materials, Uberlândia, MG, Brazil
| | - Andomar Bruno Fernandes Vilela
- Universidade Federal de Uberlândia - UFU, Department of Operative Dentistry and Dental Materials, Uberlândia, MG, Brazil
| | - Milena Suemi Irie
- Universidade Federal de Uberlândia - UFU, Department of Periodontology and Implantology, Uberlândia, MG, Brazil
| | - Antheunis Versluis
- University of Tennessee Health Science Center, College of Dentistry, Department of Bioscience Research, Memphis, TN, USA
| | | |
Collapse
|