1
|
Lue PY, Oliver MH, Neeff M, Thorne PR, Suzuki-Kerr H. Sheep as a large animal model for hearing research: comparison to common laboratory animals and humans. Lab Anim Res 2023; 39:31. [PMID: 38012676 PMCID: PMC10680324 DOI: 10.1186/s42826-023-00182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Sensorineural hearing loss (SNHL), caused by pathology in the cochlea, is the most common type of hearing loss in humans. It is generally irreversible with very few effective pharmacological treatments available to prevent the degenerative changes or minimise the impact. Part of this has been attributed to difficulty of translating "proof-of-concept" for novel treatments established in small animal models to human therapies. There is an increasing interest in the use of sheep as a large animal model. In this article, we review the small and large animal models used in pre-clinical hearing research such as mice, rats, chinchilla, guinea pig, rabbit, cat, monkey, dog, pig, and sheep to humans, and compare the physiology, inner ear anatomy, and some of their use as model systems for SNHL, including cochlear implantation surgeries. Sheep have similar cochlear anatomy, auditory threshold, neonatal auditory system development, adult and infant body size, and number of birth as humans. Based on these comparisons, we suggest that sheep are well-suited as a potential translational animal model that bridges the gap between rodent model research to the clinical use in humans. This is especially in areas looking at changes across the life-course or in specific areas of experimental investigation such as cochlear implantation and other surgical procedures, biomedical device development and age-related sensorineural hearing loss research. Combined use of small animals for research that require higher throughput and genetic modification and large animals for medical translation could greatly accelerate the overall translation of basic research in the field of auditory neuroscience from bench to clinic.
Collapse
Affiliation(s)
- Po-Yi Lue
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand
| | - Mark H Oliver
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Ngapouri Research Farm Laboratory, University of Auckland, Waiotapu, New Zealand
| | - Michel Neeff
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Department of Surgery, Auckland District Health Board, Auckland, New Zealand
| | - Peter R Thorne
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand
- Section of Audiology, The University of Auckland, Auckland, New Zealand
| | - Haruna Suzuki-Kerr
- Department of Physiology, The University of Auckland, Auckland, New Zealand.
- Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
2
|
Sachse A, Hasenbein I, Hortschansky P, Schmuck KD, Maenz S, Illerhaus B, Kuehmstedt P, Ramm R, Huber R, Kunisch E, Horbert V, Gunnella F, Roth A, Schubert H, Kinne RW. BMP-2 (and partially GDF-5) coating significantly accelerates and augments bone formation close to hydroxyapatite/tricalcium-phosphate/brushite implant cylinders for tibial bone defects in senile, osteopenic sheep. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:31. [PMID: 37378714 PMCID: PMC10307740 DOI: 10.1007/s10856-023-06734-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Bilateral defects (diameter 8 mm) in the medial tibial head of senile, osteopenic female sheep (n = 48; 9.63 ± 0.10 years; mean ± SEM) were treated with hydroxyapatite (HA)/beta-tricalcium phosphate (β-TCP)/dicalcium phosphate dihydrate (DCPD; brushite) cylinders coated with BMP-2 (25 or 250 micrograms) or growth differentiation factor (GDF)-5 (125 or 1250 micrograms; left side); cylinders without BMP served as controls (right side). Three, 6, and 9 months post-operation (n = 6 each group), bone structure and formation were analyzed in vivo by X-ray and ex vivo by osteodensitometry, histomorphometry, and micro-computed tomography (micro-CT) at 3 and 9 months. Semi-quantitative X-ray evaluation showed significantly increasing bone densities around all implant cylinders over time. High-dose BMP-2-coated cylinders (3 and 9 months) and low-dose GDF-5-coated cylinders (3 and 6 months) demonstrated significantly higher densities than controls (dose-dependent for BMP-2 at 3 months). This was confirmed by osteodensitometry at 9 months for high-dose BMP-2-coated cylinders (and selected GDF-5 groups), and was again dose-dependent for BMP-2. Osteoinduction by BMP-2 was most pronounced in the adjacent bone marrow (dynamic histomorphometry/micro-CT). BMP-2 (and partially GDF-5) significantly increased the bone formation in the vicinity of HA/TCP/DCPD cylinders used to fill tibial bone defects in senile osteopenic sheep and may be suitable for surgical therapy of critical size, non-load-bearing bone defects in cases of failed tibial head fracture or defect healing.
Collapse
Affiliation(s)
- André Sachse
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
- Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Ines Hasenbein
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
- Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Peter Hortschansky
- Leibniz-Institute for Natural Products Research and Infection Biology-Hans-Knoell-Institute, Jena, Germany
| | - Klaus D Schmuck
- Johnson & Johnson Medical GmbH, DePuy Synthes, Norderstedt, Germany
| | - Stefan Maenz
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Jena, Germany
| | - Bernhard Illerhaus
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Peter Kuehmstedt
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Jena, Germany
| | - Roland Ramm
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Jena, Germany
| | - René Huber
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Elke Kunisch
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Victoria Horbert
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Francesca Gunnella
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Andreas Roth
- Bereich Endoprothetik/Orthopädie, Klinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie, Uniklinik Leipzig AöR, Leipzig, Germany
| | - Harald Schubert
- Institute of Laboratory Animal Sciences and Welfare, Jena University Hospital, Jena, Germany
| | - Raimund W Kinne
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany.
| |
Collapse
|
3
|
Laubach M, Kobbe P, Hutmacher DW. Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials 2022; 288:121699. [PMID: 35995620 DOI: 10.1016/j.biomaterials.2022.121699] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Lumbar fusion often remains the last treatment option for various acute and chronic spinal conditions, including infectious and degenerative diseases. Placement of a cage in the intervertebral space has become a routine clinical treatment for spinal fusion surgery to provide sufficient biomechanical stability, which is required to achieve bony ingrowth of the implant. Routinely used cages for clinical application are made of titanium (Ti) or polyetheretherketone (PEEK). Ti has been used since the 1980s; however, its shortcomings, such as impaired radiographical opacity and higher elastic modulus compared to bone, have led to the development of PEEK cages, which are associated with reduced stress shielding as well as no radiographical artefacts. Since PEEK is bioinert, its osteointegration capacity is limited, which in turn enhances fibrotic tissue formation and peri-implant infections. To address shortcomings of both of these biomaterials, interdisciplinary teams have developed biodegradable cages. Rooted in promising preclinical large animal studies, a hollow cylindrical cage (Hydrosorb™) made of 70:30 poly-l-lactide-co-d, l-lactide acid (PLDLLA) was clinically studied. However, reduced bony integration and unfavourable long-term clinical outcomes prohibited its routine clinical application. More recently, scaffold-guided bone regeneration (SGBR) with application of highly porous biodegradable constructs is emerging. Advancements in additive manufacturing technology now allow the cage designs that match requirements, such as stiffness of surrounding tissues, while providing long-term biomechanical stability. A favourable clinical outcome has been observed in the treatment of various bone defects, particularly for 3D-printed composite scaffolds made of medical-grade polycaprolactone (mPCL) in combination with a ceramic filler material. Therefore, advanced cage design made of mPCL and ceramic may also carry initial high spinal forces up to the time of bony fusion and subsequently resorb without clinical side effects. Furthermore, surface modification of implants is an effective approach to simultaneously reduce microbial infection and improve tissue integration. We present a design concept for a scaffold surface which result in osteoconductive and antimicrobial properties that have the potential to achieve higher rates of fusion and less clinical complications. In this review, we explore the preclinical and clinical studies which used bioresorbable cages. Furthermore, we critically discuss the need for a cutting-edge research program that includes comprehensive preclinical in vitro and in vivo studies to enable successful translation from bench to bedside. We develop such a conceptual framework by examining the state-of-the-art literature and posing the questions that will guide this field in the coming years.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Dietmar W Hutmacher
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
4
|
Hasenbein I, Sachse A, Hortschansky P, Schmuck KD, Horbert V, Anders C, Lehmann T, Huber R, Maslaris A, Layher F, Braun C, Roth A, Plöger F, Kinne RW. Single Application of Low-Dose, Hydroxyapatite-Bound BMP-2 or GDF-5 Induces Long-Term Bone Formation and Biomechanical Stabilization of a Bone Defect in a Senile Sheep Lumbar Osteopenia Model. Biomedicines 2022; 10:513. [PMID: 35203721 PMCID: PMC8962316 DOI: 10.3390/biomedicines10020513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Effects of hydroxyapatite (HA) particles with bone morphogenetic BMP-2 or GDF-5 were compared in sheep lumbar osteopenia; in vitro release in phosphate-buffered saline (PBS) or sheep serum was assessed by ELISA. Lumbar (L) vertebral bone defects (Ø 3.5 mm) were generated in aged, osteopenic female sheep (n = 72; 9.00 ± 0.11 years; mean ± SEM). Treatment was: (a) HA particles (2.5 mg; L5); or (b) particles coated with BMP-2 (1 µg; 10 µg) or GDF-5 (5 µg; 50 µg; L4; all groups n = 6). Untouched vertebrae (L3) served as controls. Three and nine months post-therapy, bone formation was assessed by osteodensitometry, histomorphometry, and biomechanical testing. Cumulative 14-day BMP release was high in serum (76-100%), but max. 1.4% in PBS. In vivo induction of bone formation by HA particles with either growth factor was shown by: (i) significantly increased bone volume, trabecular and cortical thickness (overall increase HA + BMP vs. control close to the injection channel 71%, 110%, and 37%, respectively); (ii) partial significant effects for bone mineral density, bone formation, and compressive strength (increase 17%; 9 months; GDF-5). Treatment effects were not dose-dependent. Combined HA and BMPs (single low-dose) highly augment long-term bone formation and biomechanical stabilization in sheep lumbar osteopenia. Thus, carrier-bound BMP doses 20,000-fold to 1000-fold lower than previously applied appear suitable for spinal fusion/bone regeneration and improved treatment safety.
Collapse
Affiliation(s)
- Ines Hasenbein
- Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (I.H.); (A.S.); (V.H.); (A.M.); (F.L.)
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany;
| | - André Sachse
- Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (I.H.); (A.S.); (V.H.); (A.M.); (F.L.)
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany;
| | - Peter Hortschansky
- Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany;
| | - Klaus D. Schmuck
- Johnson & Johnson Medical GmbH, DePuySynthes, 22851 Norderstedt, Germany;
| | - Victoria Horbert
- Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (I.H.); (A.S.); (V.H.); (A.M.); (F.L.)
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany;
| | - Christoph Anders
- Division of Motor Research, Pathophysiology and Biomechanics, Experimental Trauma Surgery, Department for Hand, Reconstructive, and Trauma Surgery, Jena University Hospital, 07743 Jena, Germany;
| | - Thomas Lehmann
- Institute of Medical Statistics, Computer Sciences and Data Sciences, Jena University Hospital, 07743 Jena, Germany;
| | - René Huber
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany;
| | - Alexander Maslaris
- Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (I.H.); (A.S.); (V.H.); (A.M.); (F.L.)
| | - Frank Layher
- Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (I.H.); (A.S.); (V.H.); (A.M.); (F.L.)
| | - Christina Braun
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany;
| | - Andreas Roth
- Bereich Endoprothetik/Orthopädie, Klinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie, Uniklinik Leipzig AöR, 04103 Leipzig, Germany;
| | - Frank Plöger
- BIOPHARM GmbH, Czernyring 22, 69115 Heidelberg, Germany;
| | - Raimund W. Kinne
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany;
| |
Collapse
|