1
|
Lyu Z, Chan YT, Lu Y, Fung Lam T, Wu X, Wu J, Xu L, Yang W, Zhang C, Lidan Zhong L, Wang N. Osteoprotegerin mediates adipogenesis in obesity. J Adv Res 2024; 62:245-255. [PMID: 38906326 PMCID: PMC11331166 DOI: 10.1016/j.jare.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
INTRODUCTION Adipogenesis, the process of white adipose tissue expansion, plays a critical role in the development of obesity. Osteoprotegerin (OPG), known for its role in bone metabolism regulation, emerges as a potential regulator in mediating adipogenesis during obesity onset. OBJECTIVES This study aims to elucidate the involvement of OPG in adipogenesis during the early phases of diet-induced obesity and explore its therapeutic potential in obesity management. METHODS Using a diet-induced obesity model, we investigated OPG expression patterns in adipocytes and explored the mechanisms underlying its involvement in adipogenesis. We also assessed the effects of targeted silencing of OPG and recombinant OPG administration on obesity progression and insulin resistance. Additionally, the impact of electroacupuncture treatment on OPG levels and obesity management was evaluated in both animal models and human participants. RESULTS OPG expression was prominently activated in adipocytes of white adipose tissues during the early phase of diet-induced obesity. Hyperlipidemia induced Cbfa1-dependent OPG transcription, initiating and promoting adipogenesis, leading to cell-size expansion and lipid storage. Intracellular OPG physically bound to RAR and released the PPARɤ/RXR complex, activating adipogenesis-associated gene expression. Targeted silencing of OPG suppressed obesity development, while recombinant OPG administration promoted disease progression and insulin resistance in obese mice. Electroacupuncture treatment suppressed obesity development in an OPG-dependent manner and improved obesity parameters in obese human participants. CONCLUSION OPG emerges as a key regulator in mediating adipogenesis during obesity development. Targeting OPG holds promise for the prevention and treatment of obesity, as evidenced by the efficacy of electroacupuncture treatment in modulating OPG levels and managing obesity-related outcomes.
Collapse
Affiliation(s)
- Zipan Lyu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yau-Tuen Chan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuanjun Lu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tsz Fung Lam
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xingyao Wu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Junyu Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lin Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wei Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Linda Lidan Zhong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Freeman C, A S MD, A S P. Unraveling the Intricacies of OPG/RANKL/RANK Biology and Its Implications in Neurological Disorders-A Comprehensive Literature Review. Mol Neurobiol 2024:10.1007/s12035-024-04227-z. [PMID: 38777981 DOI: 10.1007/s12035-024-04227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The OPG/RANKL/RANK framework, along with its specific receptors, plays a crucial role in bone remodeling and the functioning of the central nervous system (CNS) and associated disorders. Recent research and investigations provide evidence that the components of osteoprotegerin (OPG), receptor activator of NF-kB ligand (RANKL), and receptor activator of NF-kB (RANK) are expressed in the CNS. The CNS structure encompasses cells involved in neuroinflammation, including local macrophages, inflammatory cells, and microglia that cross the blood-brain barrier. The OPG/RANKL/RANK trio modulates the neuroinflammatory response based on the molecular context. The levels of OPG/RANKL/RANK components can serve as biomarkers in the blood and cerebrospinal fluid. They act as neuroprotectants following brain injuries and also participate in the regulation of body weight, internal body temperature, brain ischemia, autoimmune encephalopathy, and energy metabolism. Although the OPG/RANKL/RANK system is primarily known for its role in bone remodeling, further exploring deeper into its multifunctional nature can uncover new functions and novel drug targets for diseases not previously associated with OPG/RANKL/RANK signaling.
Collapse
Affiliation(s)
- Chrisanne Freeman
- Department of Biotechnology, Bishop Heber College, Tamil Nadu, Tiruchirappalli, 620017, India.
| | - Merlyn Diana A S
- Department of Biotechnology, Bishop Heber College, Tamil Nadu, Tiruchirappalli, 620017, India
- Department of Zoology and Research Centre, Lady Doak College, Tamil Nadu, Madurai, 625002, India
| | - Priscilla A S
- Department of Zoology and Research Centre, Lady Doak College, Tamil Nadu, Madurai, 625002, India
| |
Collapse
|
3
|
Fröhlich A, Olde Heuvel F, Rehman R, Krishnamurthy SS, Li S, Li Z, Bayer D, Conquest A, Hagenston AM, Ludolph A, Huber-Lang M, Boeckers T, Knöll B, Morganti-Kossmann MC, Bading H, Roselli F. Neuronal nuclear calcium signaling suppression of microglial reactivity is mediated by osteoprotegerin after traumatic brain injury. J Neuroinflammation 2022; 19:279. [PMCID: PMC9675197 DOI: 10.1186/s12974-022-02634-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background Traumatic brain injury (TBI) is characterized by massive changes in neuronal excitation, from acute excitotoxicity to chronic hyper- or hypoexcitability. Nuclear calcium signaling pathways are involved in translating changes in synaptic inputs and neuronal activity into discrete transcriptional programs which not only affect neuronal survival and synaptic integrity, but also the crosstalk between neurons and glial cells. Here, we report the effects of blunting neuronal nuclear calcium signals in the context of TBI. Methods We used AAV vectors to express the genetically encoded and nuclear-targeted calcium buffer parvalbumin (PV.NLS.mCherry) or the calcium/calmodulin buffer CaMBP4.mCherry in neurons only. Upon TBI, the extent of neuroinflammation, neuronal death and synaptic loss were assessed by immunohistochemistry and targeted transcriptome analysis. Modulation of the overall level of neuronal activity was achieved by PSAM/PSEM chemogenetics targeted to parvalbumin interneurons. The functional impact of neuronal nuclear calcium buffering in TBI was assessed by quantification of spontaneous whisking. Results Buffering neuronal nuclear calcium unexpectedly resulted in a massive and long-lasting increase in the recruitment of reactive microglia to the injury site, which was characterized by a disease-associated and phagocytic phenotype. This effect was accompanied by a substantial surge in synaptic loss and significantly reduced whisking activity. Transcriptome analysis revealed a complex effect of TBI in the context of neuronal nuclear calcium buffering, with upregulation of complement factors, chemokines and interferon-response genes, as well as the downregulation of synaptic genes and epigenetic regulators compared to control conditions. Notably, nuclear calcium buffering led to a substantial loss in neuronal osteoprotegerin (OPG), whereas stimulation of neuronal firing induced OPG expression. Viral re-expression of OPG resulted in decreased microglial recruitment and synaptic loss. OPG upregulation was also observed in the CSF of human TBI patients, underscoring its translational value. Conclusion Neuronal nuclear calcium signals regulate the degree of microglial recruitment and reactivity upon TBI via, among others, osteoprotegerin signals. Our findings support a model whereby neuronal activity altered after TBI exerts a powerful impact on the neuroinflammatory cascade, which in turn contributes to the overall loss of synapses and functional impairment. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02634-4.
Collapse
Affiliation(s)
- Albrecht Fröhlich
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany
| | - Florian Olde Heuvel
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany
| | - Rida Rehman
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany
| | - Sruthi Sankari Krishnamurthy
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,CEMMA (Cellular and Molecular Mechanisms in Aging) Research Training Group, Ulm, Germany
| | - Shun Li
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany
| | - Zhenghui Li
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,Dept. of Neurosurgery, Kaifeng Central Hospital, Kaifeng, China
| | - David Bayer
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,CEMMA (Cellular and Molecular Mechanisms in Aging) Research Training Group, Ulm, Germany
| | - Alison Conquest
- grid.1623.60000 0004 0432 511XNational Trauma Research Institute and Department of Neurosurgery, The Alfred Hospital, Melbourne, Australia
| | - Anna M. Hagenston
- grid.7700.00000 0001 2190 4373Interdisciplinary Center for Neurosciences, Department of Neurobiology, Heidelberg University, Heidelberg, Germany
| | - Albert Ludolph
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Markus Huber-Lang
- grid.6582.90000 0004 1936 9748Institute for Clinical and Experimental Trauma Immunology, Ulm University, Ulm, Germany
| | - Tobias Boeckers
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany ,grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Bernd Knöll
- grid.6582.90000 0004 1936 9748Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| | - Maria Cristina Morganti-Kossmann
- grid.1623.60000 0004 0432 511XNational Trauma Research Institute and Department of Neurosurgery, The Alfred Hospital, Melbourne, Australia ,grid.134563.60000 0001 2168 186XDepartment of Child Health, Barrow Neurological Institute at Phoenix Children’s Hospital, University of Arizona College of Medicine, Phoenix, Phoenix, AZ USA
| | - Hilmar Bading
- grid.7700.00000 0001 2190 4373Interdisciplinary Center for Neurosciences, Department of Neurobiology, Heidelberg University, Heidelberg, Germany
| | - Francesco Roselli
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany ,Present Address: Center for Biomedical Research, Helmholtzstrasse 8, 89081 Ulm, Germany
| |
Collapse
|
4
|
Holliday LS, Patel SS, Rody WJ. RANKL and RANK in extracellular vesicles: surprising new players in bone remodeling. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:18-28. [PMID: 33982033 PMCID: PMC8112638 DOI: 10.20517/evcna.2020.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Receptor activator of nuclear factor kappa B-ligand (RANKL), its receptor RANK, and osteoprotegerin which binds RANKL and acts as a soluble decoy receptor, are essential controllers of bone remodeling. They also play important roles in establishing immune tolerance and in the development of the lymphatic system and mammary glands. In bone, RANKL stimulates osteoclast formation by binding RANK on osteoclast precursors and osteoclasts. This is required for bone resorption. Recently, RANKL and RANK have been shown to be functional components of extracellular vesicles (EVs). Data linking RANKL and RANK in EVs to biological regulatory roles are reviewed, and crucial unanswered questions are examined. RANKL and RANK are transmembrane proteins and their presence in EVs allows them to act at a distance from their cell of origin. Because RANKL-bearing osteocytes and osteoblasts are often spatially distant from RANK-containing osteoclasts in vivo, this may be crucial for the stimulation of osteoclast formation and bone resorption. RANK in EVs from osteoclasts has the capacity to stimulate a RANKL reverse signaling pathway in osteoblasts that promotes bone formation. This serves to couple bone resorption with bone formation and has inspired novel bifunctional therapeutic agents. RANKL- and RANK- containing EVs in serum may serve as biomarkers for bone and immune pathologies. In summary, EVs containing RANKL and RANK have been identified as intercellular regulators in bone biology. They add complexity to the central signaling network responsible for maintaining bone. RANKL- and RANK-containing EVs are attractive as drug targets and as biomarkers.
Collapse
Affiliation(s)
- L Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA.,Department of Anatomy & Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Shivani S Patel
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | - Wellington J Rody
- Department of Orthodontics and Pediatric Dentistry, Stony Brook School of Dental Medicine, Stony Brook, NY 11794, USA
| |
Collapse
|