1
|
Narazaki A, Shimizu R, Yoshihara T, Kikuta J, Sakaguchi R, Tobita S, Mori Y, Ishii M, Nishikawa K. Determination of the physiological range of oxygen tension in bone marrow monocytes using two-photon phosphorescence lifetime imaging microscopy. Sci Rep 2022; 12:3497. [PMID: 35273210 PMCID: PMC8913795 DOI: 10.1038/s41598-022-07521-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/15/2022] [Indexed: 01/01/2023] Open
Abstract
Oxygen is a key regulator of both development and homeostasis. To study the role of oxygen, a variety of in vitro and ex vivo cell and tissue models have been used in biomedical research. However, because of ambiguity surrounding the level of oxygen that cells experience in vivo, the cellular pathway related to oxygenation state and hypoxia have been inadequately studied in many of these models. Here, we devised a method to determine the oxygen tension in bone marrow monocytes using two-photon phosphorescence lifetime imaging microscopy with the cell-penetrating phosphorescent probe, BTPDM1. Phosphorescence lifetime imaging revealed the physiological level of oxygen tension in monocytes to be 5.3% in live mice exposed to normal air. When the mice inhaled hypoxic air, the level of oxygen tension in bone marrow monocytes decreased to 2.4%. By performing in vitro cell culture experiment within the physiological range of oxygen tension, hypoxia changed the molecular phenotype of monocytes, leading to enhanced the expression of CD169 and CD206, which are markers of a unique subset of macrophages in bone marrow, osteal macrophages. This current study enables the determination of the physiological range of oxygen tension in bone marrow with spatial resolution at a cellular level and application of this information on oxygen tension in vivo to in vitro assays. Quantifying oxygen tension in tissues can provide invaluable information on metabolism under physiological and pathophyisological conditions. This method will open new avenues for research on oxygen biology.
Collapse
Affiliation(s)
- Ayako Narazaki
- Graduate School of Medicine/Frontier Biosciences, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan
| | - Reito Shimizu
- Laboratory of Cell Biology and Metabolic Biochemistry, Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University, Tatara Miyakodani 1-3, Kyotanabe, Kyoto, 610-0394, Japan
| | - Toshitada Yoshihara
- Department of Chemistry and Chemical Biology, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Junichi Kikuta
- Graduate School of Medicine/Frontier Biosciences, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.,Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan
| | - Reiko Sakaguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.,WPI-Research Initiative-Institute for Integrated Cell-Material Science, Kyoto University, Kyoto, 606-8501, Japan
| | - Seiji Tobita
- Department of Chemistry and Chemical Biology, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.,WPI-Research Initiative-Institute for Integrated Cell-Material Science, Kyoto University, Kyoto, 606-8501, Japan
| | - Masaru Ishii
- Graduate School of Medicine/Frontier Biosciences, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.,Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan
| | - Keizo Nishikawa
- Graduate School of Medicine/Frontier Biosciences, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan. .,Laboratory of Cell Biology and Metabolic Biochemistry, Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University, Tatara Miyakodani 1-3, Kyotanabe, Kyoto, 610-0394, Japan. .,Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Nishikawa K, Seno S, Yoshihara T, Narazaki A, Sugiura Y, Shimizu R, Kikuta J, Sakaguchi R, Suzuki N, Takeda N, Semba H, Yamamoto M, Okuzaki D, Motooka D, Kobayashi Y, Suematsu M, Koseki H, Matsuda H, Yamamoto M, Tobita S, Mori Y, Ishii M. Osteoclasts adapt to physioxia perturbation through DNA demethylation. EMBO Rep 2021; 22:e53035. [PMID: 34661337 PMCID: PMC8647016 DOI: 10.15252/embr.202153035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Oxygen plays an important role in diverse biological processes. However, since quantitation of the partial pressure of cellular oxygen in vivo is challenging, the extent of oxygen perturbation in situ and its cellular response remains underexplored. Using two‐photon phosphorescence lifetime imaging microscopy, we determine the physiological range of oxygen tension in osteoclasts of live mice. We find that oxygen tension ranges from 17.4 to 36.4 mmHg, under hypoxic and normoxic conditions, respectively. Physiological normoxia thus corresponds to 5% and hypoxia to 2% oxygen in osteoclasts. Hypoxia in this range severely limits osteoclastogenesis, independent of energy metabolism and hypoxia‐inducible factor activity. We observe that hypoxia decreases ten‐eleven translocation (TET) activity. Tet2/3 cooperatively induces Prdm1 expression via oxygen‐dependent DNA demethylation, which in turn activates NFATc1 required for osteoclastogenesis. Taken together, our results reveal that TET enzymes, acting as functional oxygen sensors, regulate osteoclastogenesis within the physiological range of oxygen tension, thus opening new avenues for research on in vivo response to oxygen perturbation.
Collapse
Affiliation(s)
- Keizo Nishikawa
- Laboratory of Cell Biology and Metabolic Biochemistry, Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan.,Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.,Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Toshitada Yoshihara
- Department of Chemistry and Chemical Biology, Gunma University, Kiryu, Japan
| | - Ayako Narazaki
- Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University, Tokyo, Japan
| | - Reito Shimizu
- Laboratory of Cell Biology and Metabolic Biochemistry, Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.,Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Reiko Sakaguchi
- WPI-Research Initiative-Institute for Integrated Cell-Material Science, Kyoto University, Kyoto, Japan.,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Semba
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Cardiovascular Medicine/Basic Research, The Cardiovascular Institute, Tokyo, Japan
| | - Masamichi Yamamoto
- Department of Artificial Kidneys, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daisuke Okuzaki
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | | | - Haruhiko Koseki
- Developmental Genetics Group, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seiji Tobita
- Department of Chemistry and Chemical Biology, Gunma University, Kiryu, Japan
| | - Yasuo Mori
- WPI-Research Initiative-Institute for Integrated Cell-Material Science, Kyoto University, Kyoto, Japan.,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.,Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| |
Collapse
|