1
|
Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chem Rev 2022; 122:11900-11973. [PMID: 35849738 PMCID: PMC9549741 DOI: 10.1021/acs.chemrev.1c00914] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gases like H2, N2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N2, CO2, and CO and the production of H2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N2 fixation by nitrogenase and H2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.
Collapse
Affiliation(s)
- Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Berlin 14195, Germany
| | | | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Silke Leimkühler
- University of Potsdam, Molecular Enzymology, Potsdam 14476, Germany
| | - Shun Hirota
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Andrew Jasniewski
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Hideaki Ogata
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
- Hokkaido University, Institute of Low Temperature Science, Sapporo 060-0819, Japan
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
2
|
Cavazza C, Collin-Faure V, Pérard J, Diemer H, Cianférani S, Rabilloud T, Darrouzet E. Proteomic analysis of Rhodospirillum rubrum after carbon monoxide exposure reveals an important effect on metallic cofactor biosynthesis. J Proteomics 2022; 250:104389. [PMID: 34601154 DOI: 10.1016/j.jprot.2021.104389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
Some carboxydotrophs like Rhodospirillum rubrum are able to grow with CO as their sole source of energy using a Carbone monoxide dehydrogenase (CODH) and an Energy conserving hydrogenase (ECH) to perform anaerobically the so called water-gas shift reaction (WGSR) (CO + H2O → CO2 + H2). Several studies have focused at the biochemical and biophysical level on this enzymatic system and a few OMICS studies on CO metabolism. Knowing that CO is toxic in particular due to its binding to heme iron atoms, and is even considered as a potential antibacterial agent, we decided to use a proteomic approach in order to analyze R. rubrum adaptation in term of metabolism and management of the toxic effect. In particular, this study allowed highlighting a set of proteins likely implicated in ECH maturation, and important perturbations in term of cofactor biosynthesis, especially metallic cofactors. This shows that even this CO tolerant microorganism cannot avoid completely CO toxic effects associated with its interaction with metallic ions. SIGNIFICANCE: This proteomic study highlights the fact that even in a microorganism able to handle carbon monoxide and in some way detoxifying it via the intrinsic action of the carbon monoxide dehydrogenase (CODH), CO has important effects on metal homeostasis, metal cofactors and metalloproteins. These effects are direct or indirect via transcription regulation, and amplified by the high interdependency of cofactors biosynthesis.
Collapse
Affiliation(s)
- Christine Cavazza
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France.
| | | | - Julien Pérard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France.
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; Infrastructure Nationale de Protéomique ProFI - FR2048 (CNRS-CEA), 67087 Strasbourg, France.
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; Infrastructure Nationale de Protéomique ProFI - FR2048 (CNRS-CEA), 67087 Strasbourg, France.
| | - Thierry Rabilloud
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France.
| | | |
Collapse
|
3
|
Darrouzet E, Rinaldi C, Zambelli B, Ciurli S, Cavazza C. Revisiting the CooJ family, a potential chaperone for nickel delivery to [NiFe]‑carbon monoxide dehydrogenase. J Inorg Biochem 2021; 225:111588. [PMID: 34530332 DOI: 10.1016/j.jinorgbio.2021.111588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/21/2022]
Abstract
Nickel insertion into nickel-dependent carbon monoxide dehydrogenase (CODH) represents a key step in the enzyme activation. This is the last step of the biosynthesis of the active site, which contains an atypical heteronuclear NiFe4S4 cluster known as the C-cluster. The enzyme maturation is performed by three accessory proteins, namely CooC, CooT and CooJ. Among them, CooJ from Rhodospirillum rubrum is a histidine-rich protein containing two distinct and spatially separated Ni(II)-binding sites: a N-terminal high affinity site (HAS) and a histidine tail at the C-terminus. In 46 CooJ homologues, the HAS motif was found to be strictly conserved with a H(W/F)XXHXXXH sequence. Here, a proteome database search identified at least 150 CooJ homologues and revealed distinct motifs for HAS, featuring 2, 3 or 4 histidines. The purification and biophysical characterization of three representative members of this protein family showed that they are all homodimers able to bind Ni(II) ions via one or two independent binding sites. Initially thought to be present only in R. rubrum, this study strongly suggests that CooJ could play a significant role in CODH maturation or in nickel homeostasis.
Collapse
Affiliation(s)
- Elisabeth Darrouzet
- University of Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Clara Rinaldi
- University of Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna, Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna, Italy
| | - Christine Cavazza
- University of Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France.
| |
Collapse
|
4
|
Terranova U. Residues surrounding the active centre of carbon monoxide dehydrogenase are key in converting [Formula: see text] to CO. J Biol Inorg Chem 2021; 26:617-624. [PMID: 34255144 DOI: 10.1007/s00775-021-01878-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
The enzyme carbon monoxide dehydrogenase is capable of efficiently converting [Formula: see text] to CO and, therefore, can enable an affordable [Formula: see text] recycling strategy. The reduction of [Formula: see text] occurs at a peculiar nickel-iron-sulfur cluster, following a mechanism that remains little understood. In this study, we have used ab initio molecular dynamics simulations to explore the free energy landscape of the reaction. We predict the existence of a COOH ligand that strongly interacts with the surrounding protein residues and favours a mechanism where a [Formula: see text] molecule is eliminated before CO. We have taken advantages of the insights offered by our simulations to revisit the catalytic mechanism and the role of the residues surrounding the active centre in particular, thus assisting in the design of inorganic catalysts that mimic the enzyme.
Collapse
Affiliation(s)
- Umberto Terranova
- Faculty of Medicine and Health Sciences, Crewe Campus, University of Buckingham, Crewe, CW1 5DU, UK.
| |
Collapse
|
5
|
Contaldo U, Guigliarelli B, Perard J, Rinaldi C, Le Goff A, Cavazza C. Efficient Electrochemical CO 2/CO Interconversion by an Engineered Carbon Monoxide Dehydrogenase on a Gas-Diffusion Carbon Nanotube-Based Bioelectrode. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Umberto Contaldo
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
- University Grenoble Alpes, DCM UMR 5250, BEA, F-38000 Grenoble, France
| | | | - Julien Perard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Clara Rinaldi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Alan Le Goff
- University Grenoble Alpes, DCM UMR 5250, BEA, F-38000 Grenoble, France
| | - Christine Cavazza
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| |
Collapse
|
6
|
Wittenborn EC, Cohen SE, Merrouch M, Léger C, Fourmond V, Dementin S, Drennan CL. Structural insight into metallocofactor maturation in carbon monoxide dehydrogenase. J Biol Chem 2019; 294:13017-13026. [PMID: 31296570 DOI: 10.1074/jbc.ra119.009610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
The nickel-dependent carbon monoxide dehydrogenase (CODH) employs a unique heterometallic nickel-iron-sulfur cluster, termed the C-cluster, to catalyze the interconversion of CO and CO2 Like other complex metalloenzymes, CODH requires dedicated assembly machinery to form the fully intact and functional C-cluster. In particular, nickel incorporation into the C-cluster depends on the maturation factor CooC; however, the mechanism of nickel insertion remains poorly understood. Here, we compare X-ray structures (1.50-2.48 Å resolution) of CODH from Desulfovibrio vulgaris (DvCODH) heterologously expressed in either the absence (DvCODH-CooC) or presence (DvCODH+CooC) of co-expressed CooC. We find that the C-cluster of DvCODH-CooC is fully loaded with iron but does not contain any nickel. Interestingly, the so-called unique iron ion (Feu) occupies both its canonical site (80% occupancy) and the nickel site (20% occupancy), with addition of reductant causing further mismetallation of the nickel site (60% iron occupancy). We also demonstrate that a DvCODH variant that lacks a surface-accessible iron-sulfur cluster (the D-cluster) has a C-cluster that is also replete in iron but lacks nickel, despite co-expression with CooC. In this variant, all Feu is in its canonical location, and the nickel site is empty. This D-cluster-deficient CODH is inactive despite attempts to reconstitute it with nickel. Taken together, these results suggest that an empty nickel site is not sufficient for nickel incorporation. Based on our findings, we propose a model for C-cluster assembly that requires both CooC and a functioning D-cluster, involves precise redox-state control, and includes a two-step nickel-binding process.
Collapse
Affiliation(s)
- Elizabeth C Wittenborn
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Steven E Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Mériem Merrouch
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Christophe Léger
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Vincent Fourmond
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Sébastien Dementin
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Marseille, France.
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1M1, Canada.
| |
Collapse
|
7
|
Alfano M, Pérard J, Carpentier P, Basset C, Zambelli B, Timm J, Crouzy S, Ciurli S, Cavazza C. The carbon monoxide dehydrogenase accessory protein CooJ is a histidine-rich multidomain dimer containing an unexpected Ni(II)-binding site. J Biol Chem 2019; 294:7601-7614. [PMID: 30858174 DOI: 10.1074/jbc.ra119.008011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/09/2019] [Indexed: 01/14/2023] Open
Abstract
Activation of nickel enzymes requires specific accessory proteins organized in multiprotein complexes controlling metal transfer to the active site. Histidine-rich clusters are generally present in at least one of the metallochaperones involved in nickel delivery. The maturation of carbon monoxide dehydrogenase in the proteobacterium Rhodospirillum rubrum requires three accessory proteins, CooC, CooT, and CooJ, dedicated to nickel insertion into the active site, a distorted [NiFe3S4] cluster coordinated to an iron site. Previously, CooJ from R. rubrum (RrCooJ) has been described as a nickel chaperone with 16 histidines and 2 cysteines at its C terminus. Here, the X-ray structure of a truncated version of RrCooJ, combined with small-angle X-ray scattering data and a modeling study of the full-length protein, revealed a homodimer comprising a coiled coil with two independent and highly flexible His tails. Using isothermal calorimetry, we characterized several metal-binding sites (four per dimer) involving the His-rich motifs and having similar metal affinity (KD = 1.6 μm). Remarkably, biophysical approaches, site-directed mutagenesis, and X-ray crystallography uncovered an additional nickel-binding site at the dimer interface, which binds Ni(II) with an affinity of 380 nm Although RrCooJ was initially thought to be a unique protein, a proteome database search identified at least 46 bacterial CooJ homologs. These homologs all possess two spatially separated nickel-binding motifs: a variable C-terminal histidine tail and a strictly conserved H(W/F)X 2HX 3H motif, identified in this study, suggesting a dual function for CooJ both as a nickel chaperone and as a nickel storage protein.
Collapse
Affiliation(s)
- Marila Alfano
- From the Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France and
| | - Julien Pérard
- From the Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France and
| | - Philippe Carpentier
- From the Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France and
| | - Christian Basset
- From the Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France and
| | - Barbara Zambelli
- the Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, I-40127 Bologna, Italy
| | - Jennifer Timm
- From the Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France and
| | - Serge Crouzy
- From the Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France and
| | - Stefano Ciurli
- the Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, I-40127 Bologna, Italy
| | - Christine Cavazza
- From the Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France and
| |
Collapse
|
8
|
Inoue M, Nakamoto I, Omae K, Oguro T, Ogata H, Yoshida T, Sako Y. Structural and Phylogenetic Diversity of Anaerobic Carbon-Monoxide Dehydrogenases. Front Microbiol 2019; 9:3353. [PMID: 30705673 PMCID: PMC6344411 DOI: 10.3389/fmicb.2018.03353] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/31/2018] [Indexed: 11/30/2022] Open
Abstract
Anaerobic Ni-containing carbon-monoxide dehydrogenases (Ni-CODHs) catalyze the reversible conversion between carbon monoxide and carbon dioxide as multi-enzyme complexes responsible for carbon fixation and energy conservation in anaerobic microbes. However, few biochemically characterized model enzymes exist, with most Ni-CODHs remaining functionally unknown. Here, we performed phylogenetic and structure-based Ni-CODH classification using an expanded dataset comprised of 1942 non-redundant Ni-CODHs from 1375 Ni-CODH-encoding genomes across 36 phyla. Ni-CODHs were divided into seven clades, including a novel clade. Further classification into 24 structural groups based on sequence analysis combined with structural prediction revealed diverse structural motifs for metal cluster formation and catalysis, including novel structural motifs potentially capable of forming metal clusters or binding metal ions, indicating Ni-CODH diversity and plasticity. Phylogenetic analysis illustrated that the metal clusters responsible for intermolecular electron transfer were drastically altered during evolution. Additionally, we identified novel putative Ni-CODH-associated proteins from genomic contexts other than the Wood–Ljungdahl pathway and energy converting hydrogenase system proteins. Network analysis among the structural groups of Ni-CODHs, their associated proteins and taxonomies revealed previously unrecognized gene clusters for Ni-CODHs, including uncharacterized structural groups with putative metal transporters, oxidoreductases, or transcription factors. These results suggested diversification of Ni-CODH structures adapting to their associated proteins across microbial genomes.
Collapse
Affiliation(s)
- Masao Inoue
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Issei Nakamoto
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kimiho Omae
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tatsuki Oguro
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiko Sako
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Alfano M, Pérard J, Miras R, Catty P, Cavazza C. Biophysical and structural characterization of the putative nickel chaperone CooT from Carboxydothermus hydrogenoformans. J Biol Inorg Chem 2018; 23:809-817. [PMID: 29882029 DOI: 10.1007/s00775-018-1576-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/01/2018] [Indexed: 01/28/2023]
Abstract
Carboxydothermus hydrogenoformans is a model microorganism for the study of [NiFe]-CODH, a key enzyme of carbon cycle in anaerobic microorganisms. The enzyme possesses a unique active site (C-cluster), constituted of a distorted [NiFe3S4] cubane linked to a mononuclear Fe(II) center. Both the biogenesis of the C-cluster and the activation of CODH by nickel insertion remain unclear. Among the three accessory proteins thought to play a role in this latter step (CooC, CooJ, and CooT), CooT is identified as a nickel chaperone involved in CODH maturation in Rhodospirillum rubrum. Here, we structurally and biophysically characterized a putative CooT protein present in C. hydrogenoformans (pChCooT). Despite the low sequence homologies between CooT from R. rubrum (RrCooT) and pChCooT (19% sequence identity), the two proteins share several similarities, such as their overall structure and a solvent-exposed Ni(II)-binding site at the dimer interface. Moreover, the X-ray structure of pChCooT reveals the proximity between the histidine 55, a potential nickel-coordinating residue, and the cysteine 2, a highly conserved key residue in Ni(II)-binding.
Collapse
Affiliation(s)
- M Alfano
- University of Grenoble Alpes, CEA, CNRS, BIG, CBM, 38000, Grenoble, France
| | - J Pérard
- University of Grenoble Alpes, CEA, CNRS, BIG, CBM, 38000, Grenoble, France
| | - R Miras
- University of Grenoble Alpes, CEA, CNRS, BIG, CBM, 38000, Grenoble, France
| | - P Catty
- University of Grenoble Alpes, CEA, CNRS, BIG, CBM, 38000, Grenoble, France
| | - C Cavazza
- University of Grenoble Alpes, CEA, CNRS, BIG, CBM, 38000, Grenoble, France.
| |
Collapse
|
10
|
Timm J, Brochier-Armanet C, Perard J, Zambelli B, Ollagnier-de-Choudens S, Ciurli S, Cavazza C. The CO dehydrogenase accessory protein CooT is a novel nickel-binding protein. Metallomics 2018; 9:575-583. [PMID: 28447092 DOI: 10.1039/c7mt00063d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In Rhodospirillum rubrum, maturation of Carbon Monoxide Dehydrogenase (CODH) requires three accessory proteins, CooC, CooT and CooJ, dedicated to nickel insertion into the active site, which is constituted by a distorted [NiFe3S4] cubane coordinated with a mononuclear Fe site. CooC is an ATPase proposed to provide the energy required for the maturation process, while CooJ is described as a metallochaperone with 16 histidines and 2 cysteines at the C-terminus, likely involved in metal binding and/or storage. Prior to the present study, no information was available on CooT at the molecular level. Here, the X-ray structure of RrCooT was obtained, which revealed that this protein is a homodimer featuring a fold that resembles an Sm-like domain, suggesting a role in RNA metabolism that was however not supported by experimental observations. Biochemical and biophysical evidence based on circular dichroism spectroscopy, light scattering, isothermal titration calorimetry and site-directed mutagenesis showed that RrCooT specifically binds a single Ni(ii) per dimer, with a dissociation constant of 9 nM, through the pair of Cys2, highly conserved residues, located at the dimer interface. Despite its role in the activation of RrCODH in vivo, CooT was thought to be a unique protein, found only in R. rubrum, with an unclear function. In this study, we extended the biological impact of CooT, establishing that this protein is a member of a novel Ni(ii)-binding protein family with 111 homologues, linked to anaerobic metabolism in bacteria and archaea, and in most cases to the presence of CODH.
Collapse
Affiliation(s)
- J Timm
- Université Grenoble Alpes, Laboratoire de Chimie et Biologie des Métaux, BioCat, F-Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Ahn HM, Bae JM, Kim MJ, Bok KH, Jeong HY, Lee SJ, Kim C. Synthesis, Characterization, and Efficient Catalytic Activities of a Nickel(II) Porphyrin: Remarkable Solvent and Substrate Effects on Participation of Multiple Active Oxidants. Chemistry 2017; 23:11969-11976. [PMID: 28731593 DOI: 10.1002/chem.201702750] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 12/13/2022]
Abstract
A new nickel(II) porphyrin complex, [NiII (porp)] (1), has been synthesized and characterized by 1 H NMR, 13 C NMR and mass spectrometry analysis. This NiII porphyrin complex 1 quantitatively catalyzed the epoxidation reaction of a wide range of olefins with meta-chloroperoxybenzoic acid (m-CPBA) under mild conditions. Reactivity and Hammett studies, H218 O-exchange experiments, and the use of PPAA (peroxyphenylacetic acid) as a mechanistic probe suggested that participation of multiple active oxidants NiII -OOC(O)R 2, NiIV -Oxo 3, and NiIII -Oxo 4 within olefin epoxidation reactions by the nickel porphyrin complex is markedly affected by solvent polarity, concentration, and type of substrate. In aprotic solvent systems, such as toluene, CH2 Cl2 , and CH3 CN, multiple oxidants, NiII -(O)R 2, NiIV -Oxo 3, and NiIII -Oxo 4, operate simultaneously as the key active intermediates responsible for epoxidation reactions of easy-to-oxidize substrate cyclohexene, whereas NiIV -Oxo 3 and NiIII -Oxo 4 species become the common reactive oxidant for the difficult-to-oxidize substrate 1-octene. In a protic solvent system, a mixture of CH3 CN and H2 O (95:5), the NiII -OOC(O)R 2 undergoes heterolytic or homolytic O-O bond cleavage to afford NiIV -Oxo 3 and NiIII -Oxo 4 species by general acid catalysis prior to direct interaction between 2 and olefin, regardless of the type of substrate. In this case, only NiIV -Oxo 3 and NiIII -Oxo 4 species were the common reactive oxidant responsible for olefin epoxidation reactions.
Collapse
Affiliation(s)
- Hye Mi Ahn
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| | - Jeong Mi Bae
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| | - Min Jeong Kim
- Department of Chemistry, Korea University, Seoul, 136-701, Korea
| | - Kwon Hee Bok
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| | - Ha Young Jeong
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| | - Suk Joong Lee
- Department of Chemistry, Korea University, Seoul, 136-701, Korea
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| |
Collapse
|
12
|
Xia W, Li H, Sun H. Nickel Metallochaperones: Structure, Function, and Nickel-Binding Properties. THE BIOLOGICAL CHEMISTRY OF NICKEL 2017. [DOI: 10.1039/9781788010580-00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nickel-containing enzymes catalyze a series of important biochemical processes in both prokaryotes and eukaryotes. The maturation of the enzymes requires the proper assembly of the nickel-containing active sites, which involves a battery of nickel metallochaperones that exert metal delivery and storage functions. “Cross-talk” also exists between different nickel enzyme maturation processes. This chapter summarizes the updated knowledge about the nickel chaperones based on biochemical and structural biology research, and discusses the possible nickel delivery mechanisms.
Collapse
Affiliation(s)
- Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong Hong Kong SAR China
| | - Hongzhe Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry Sun Yat-sen University Guangzhou 510275 China
- Department of Chemistry, The University of Hong Kong Hong Kong SAR China
| |
Collapse
|
13
|
Diender M, Stams AJM, Sousa DZ. Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation. Front Microbiol 2015; 6:1275. [PMID: 26635746 PMCID: PMC4652020 DOI: 10.3389/fmicb.2015.01275] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/31/2015] [Indexed: 11/29/2022] Open
Abstract
Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.
Collapse
Affiliation(s)
- Martijn Diender
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands ; Centre of Biological Engineering, University of Minho Braga, Portugal
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| |
Collapse
|
14
|
Yamaguchi A, Yamamoto M, Takai K, Ishii T, Hashimoto K, Nakamura R. Electrochemical CO2 Reduction by Ni-containing Iron Sulfides: How Is CO2 Electrochemically Reduced at Bisulfide-Bearing Deep-sea Hydrothermal Precipitates? Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.07.078] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Inoue T, Takao K, Fukuyama Y, Yoshida T, Sako Y. Over-expression of carbon monoxide dehydrogenase-I with an accessory protein co-expression: a key enzyme for carbon dioxide reduction. Biosci Biotechnol Biochem 2014; 78:582-7. [PMID: 25036953 DOI: 10.1080/09168451.2014.890027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Carbon monoxide dehydrogenase-I (CODH-I) from the CO-utilizing bacterium Carboxydothermus hydrogenoformans are expected to be utilized as a part of reproducible carbon dioxide photoreduction system. However, the over-expression system for CODH-I remains to be constructed. CODH-I constitutes a hydrogenase/CODH gene cluster including a gene encoding a Ni-insertion accessory protein, CooC (cooC3). Through co-expression of CooC3, we found an over-expression system with higher activity. The Rec-CODH-I with the co-expression exhibits 8060 U/mg which was approximately threefold than that without co-expression (2270 U/mg). In addition, co-expression resulted in Ni(2+) content increase; the amount of Ni atoms of Rec-CODH-I was approximately thrice than that without co-expression.
Collapse
Affiliation(s)
- Takahiro Inoue
- a Division of Applied Biosciences , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| | | | | | | | | |
Collapse
|
16
|
Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster. Biochem Biophys Res Commun 2013; 441:13-7. [DOI: 10.1016/j.bbrc.2013.09.143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/23/2013] [Indexed: 11/24/2022]
|
17
|
Bustamante M, Valencia I, Castro M. Theoretical Study of [Ni (H2O)n]2+(H2O)m (n ≤ 6, m ≤ 18). J Phys Chem A 2011; 115:4115-34. [DOI: 10.1021/jp108503e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Marcía Bustamante
- Instituto de Materiales y Reactivos de la Universidad de la Habana, Cuba, San Lazaro s/n, Vedado CP 10400, Ciudad de la Habana, Cuba
- Departamento de Física y Química Teórica, DEPg, Facultad de Química, Universidad Nacional Autónoma de México, C.P. 04510, México D. F., México
| | - Israel Valencia
- Departamento de Física y Química Teórica, DEPg, Facultad de Química, Universidad Nacional Autónoma de México, C.P. 04510, México D. F., México
| | - Miguel Castro
- Departamento de Física y Química Teórica, DEPg, Facultad de Química, Universidad Nacional Autónoma de México, C.P. 04510, México D. F., México
| |
Collapse
|
18
|
|
19
|
Jeoung JH, Giese T, Grünwald M, Dobbek H. CooC1 from Carboxydothermus hydrogenoformans is a nickel-binding ATPase. Biochemistry 2009; 48:11505-13. [PMID: 19883128 DOI: 10.1021/bi901443z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The maturation of nickel-dependent enzymes requires the participation of several accessory proteins. Typically the hydrolysis of nucleotides is necessary for the final metal transfer steps. The ATPase CooC has been implicated in the insertion of nickel into the Ni,Fe cluster (C cluster) of the carbon monoxide dehydrogenase from Rhodospirillum rubrum. Analysis of the amino acid sequence of CooC suggests the presence of motifs typical for the MinD family of SIMIBI class NTPases, which contain a deviant Walker A motif. The genome of the carboxidotrophic hydrogenogenic bacterium Carboxydothermus hydrogenoformans contains three open reading frames with distinct sequence homology to CooC from R. rubrum. We overproduced, isolated, and studied CooC1 from C. hydrogenoformans. As-isolated CooC1 is monomeric in the absence of ligands but dimerizes in the presence of either nickel, ADP, or ATP. CooC1 shows ATPase activity, and the ADP- and ATP-bound dimeric states are distinguished by their stability. The K8A mutant of CooC1, in which alanine replaces the signature lysine typical for the deviant Walker A motif in the MinD family, is incapable of both ATP hydrolysis and ATP-dependent dimerization. This corroborates that CooC1 is indeed a member of the MinD family and suggests an analogous dynamic equilibrium between monomeric and dimeric states. CooC proteins are involved in the insertion of nickel into carbon monoxide dehydrogenases, and we found that one CooC1 dimer binds one Ni(II) ion with nanomolar affinity. Ni-induced dimerization and the Ni(II)-CooC1 stoichiometry suggest that the Ni-binding site of CooC1 occurs in the dimer interface.
Collapse
Affiliation(s)
- Jae-Hun Jeoung
- Bioinorganic Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Yanjie Li
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Deborah B. Zamble
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
21
|
|