• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4603666)   Today's Articles (273)   Subscriber (49370)
For: van der Linden E, Burgdorf T, de Lacey AL, Buhrke T, Scholte M, Fernandez VM, Friedrich B, Albracht SPJ. An improved purification procedure for the soluble [NiFe]-hydrogenase of Ralstonia eutropha: new insights into its (in)stability and spectroscopic properties. J Biol Inorg Chem 2006;11:247-60. [PMID: 16418856 DOI: 10.1007/s00775-005-0075-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 12/12/2005] [Indexed: 11/28/2022]
Number Cited by Other Article(s)
1
Fasano A, Fourmond V, Léger C. Outer-sphere effects on the O2 sensitivity, catalytic bias and catalytic reversibility of hydrogenases. Chem Sci 2024;15:5418-5433. [PMID: 38638217 PMCID: PMC11023054 DOI: 10.1039/d4sc00691g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024]  Open
2
Al-Shameri A, Siebert DL, Sutiono S, Lauterbach L, Sieber V. Hydrogenase-based oxidative biocatalysis without oxygen. Nat Commun 2023;14:2693. [PMID: 37258512 DOI: 10.1038/s41467-023-38227-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/21/2023] [Indexed: 06/02/2023]  Open
3
Kulka-Peschke CJ, Schulz AC, Lorent C, Rippers Y, Wahlefeld S, Preissler J, Schulz C, Wiemann C, Bernitzky CCM, Karafoulidi-Retsou C, Wrathall SLD, Procacci B, Matsuura H, Greetham GM, Teutloff C, Lauterbach L, Higuchi Y, Ishii M, Hunt NT, Lenz O, Zebger I, Horch M. Reversible Glutamate Coordination to High-Valent Nickel Protects the Active Site of a [NiFe] Hydrogenase from Oxygen. J Am Chem Soc 2022;144:17022-17032. [PMID: 36084022 DOI: 10.1021/jacs.2c06400] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
4
Understanding 2D-IR Spectra of Hydrogenases: A Descriptive and Predictive Computational Study. Catalysts 2022. [DOI: 10.3390/catal12090988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
5
Fan Q, Neubauer P, Lenz O, Gimpel M. Heterologous Hydrogenase Overproduction Systems for Biotechnology-An Overview. Int J Mol Sci 2020;21:E5890. [PMID: 32824336 PMCID: PMC7460606 DOI: 10.3390/ijms21165890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 01/16/2023]  Open
6
Arrigoni F, Bertini L, Breglia R, Greco C, De Gioia L, Zampella G. Catalytic H2 evolution/oxidation in [FeFe]-hydrogenase biomimetics: account from DFT on the interplay of related issues and proposed solutions. NEW J CHEM 2020. [DOI: 10.1039/d0nj03393f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
7
Enzymatic and spectroscopic properties of a thermostable [NiFe]‑hydrogenase performing H2-driven NAD+-reduction in the presence of O2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017;1859:8-18. [PMID: 28970007 DOI: 10.1016/j.bbabio.2017.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/17/2017] [Accepted: 09/28/2017] [Indexed: 12/18/2022]
8
Production and purification of a soluble hydrogenase from Ralstonia eutropha H16 for potential hydrogen fuel cell applications. MethodsX 2016;3:242-50. [PMID: 27077052 PMCID: PMC4816682 DOI: 10.1016/j.mex.2016.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/07/2016] [Indexed: 11/22/2022]  Open
9
Kwan P, McIntosh CL, Jennings DP, Hopkins RC, Chandrayan SK, Wu CH, Adams MWW, Jones AK. The [NiFe]-Hydrogenase of Pyrococcus furiosus Exhibits a New Type of Oxygen Tolerance. J Am Chem Soc 2015;137:13556-65. [PMID: 26436715 DOI: 10.1021/jacs.5b07680] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
10
Löwenstein J, Lauterbach L, Teutloff C, Lenz O, Bittl R. Active Site of the NAD(+)-Reducing Hydrogenase from Ralstonia eutropha Studied by EPR Spectroscopy. J Phys Chem B 2015. [PMID: 26214595 DOI: 10.1021/acs.jpcb.5b04144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
11
Horch M, Lauterbach L, Mroginski MA, Hildebrandt P, Lenz O, Zebger I. Reversible active site sulfoxygenation can explain the oxygen tolerance of a NAD+-reducing [NiFe] hydrogenase and its unusual infrared spectroscopic properties. J Am Chem Soc 2015;137:2555-64. [PMID: 25647259 DOI: 10.1021/ja511154y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
12
Karstens K, Wahlefeld S, Horch M, Grunzel M, Lauterbach L, Lendzian F, Zebger I, Lenz O. Impact of the iron-sulfur cluster proximal to the active site on the catalytic function of an O2-tolerant NAD(+)-reducing [NiFe]-hydrogenase. Biochemistry 2015;54:389-403. [PMID: 25517969 DOI: 10.1021/bi501347u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
13
Horch M, Hildebrandt P, Zebger I. Concepts in bio-molecular spectroscopy: vibrational case studies on metalloenzymes. Phys Chem Chem Phys 2015;17:18222-37. [DOI: 10.1039/c5cp02447a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
14
Lubitz W, Ogata H, Rüdiger O, Reijerse E. Hydrogenases. Chem Rev 2014;114:4081-148. [DOI: 10.1021/cr4005814] [Citation(s) in RCA: 1399] [Impact Index Per Article: 139.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
15
Lauterbach L, Lenz O. Catalytic production of hydrogen peroxide and water by oxygen-tolerant [NiFe]-hydrogenase during H2 cycling in the presence of O2. J Am Chem Soc 2013;135:17897-905. [PMID: 24180286 DOI: 10.1021/ja408420d] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
16
Schiffels J, Pinkenburg O, Schelden M, Aboulnaga EHAA, Baumann MEM, Selmer T. An innovative cloning platform enables large-scale production and maturation of an oxygen-tolerant [NiFe]-hydrogenase from Cupriavidus necator in Escherichia coli. PLoS One 2013;8:e68812. [PMID: 23861944 PMCID: PMC3702609 DOI: 10.1371/journal.pone.0068812] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 05/31/2013] [Indexed: 11/18/2022]  Open
17
[NiFe] hydrogenases: a common active site for hydrogen metabolism under diverse conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013;1827:986-1002. [PMID: 23399489 DOI: 10.1016/j.bbabio.2013.01.015] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/06/2012] [Accepted: 01/26/2013] [Indexed: 01/05/2023]
18
Jugder BE, Welch J, Aguey-Zinsou KF, Marquis CP. Fundamentals and electrochemical applications of [Ni–Fe]-uptake hydrogenases. RSC Adv 2013. [DOI: 10.1039/c3ra22668a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]  Open
19
Horch M, Rippers Y, Mroginski MA, Hildebrandt P, Zebger I. Combining Spectroscopy and Theory to Evaluate Structural Models of Metalloenzymes: A Case Study on the Soluble [NiFe] Hydrogenase fromRalstonia eutropha. Chemphyschem 2012;14:185-91. [DOI: 10.1002/cphc.201200853] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Indexed: 11/09/2022]
20
Horch M, Lauterbach L, Lenz O, Hildebrandt P, Zebger I. NAD(H)-coupled hydrogen cycling - structure-function relationships of bidirectional [NiFe] hydrogenases. FEBS Lett 2011;586:545-56. [PMID: 22056977 DOI: 10.1016/j.febslet.2011.10.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 10/15/2022]
21
Lauterbach L, Idris Z, Vincent KA, Lenz O. Catalytic properties of the isolated diaphorase fragment of the NAD-reducing [NiFe]-hydrogenase from Ralstonia eutropha. PLoS One 2011;6:e25939. [PMID: 22016788 PMCID: PMC3189943 DOI: 10.1371/journal.pone.0025939] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/14/2011] [Indexed: 11/19/2022]  Open
22
Albracht SPJ, Meijer AJ, Rydström J. Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H₂O₂--implications for their role in disease, especially cancer. J Bioenerg Biomembr 2011;43:541-64. [PMID: 21882037 DOI: 10.1007/s10863-011-9381-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/03/2011] [Indexed: 12/20/2022]
23
McIntosh CL, Germer F, Schulz R, Appel J, Jones AK. The [NiFe]-hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 works bidirectionally with a bias to H2 production. J Am Chem Soc 2011;133:11308-19. [PMID: 21675712 DOI: 10.1021/ja203376y] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
24
Fritsch J, Löscher S, Sanganas O, Siebert E, Zebger I, Stein M, Ludwig M, De Lacey AL, Dau H, Friedrich B, Lenz O, Haumann M. [NiFe] and [FeS] Cofactors in the Membrane-Bound Hydrogenase of Ralstonia eutropha Investigated by X-ray Absorption Spectroscopy: Insights into O2-Tolerant H2 Cleavage. Biochemistry 2011;50:5858-69. [DOI: 10.1021/bi200367u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
25
Kohlmann Y, Pohlmann A, Otto A, Becher D, Cramm R, Lütte S, Schwartz E, Hecker M, Friedrich B. Analyses of soluble and membrane proteomes of Ralstonia eutropha H16 reveal major changes in the protein complement in adaptation to lithoautotrophy. J Proteome Res 2011;10:2767-76. [PMID: 21561103 DOI: 10.1021/pr101289v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
26
Lauterbach L, Liu J, Horch M, Hummel P, Schwarze A, Haumann M, Vincent KA, Lenz O, Zebger I. The Hydrogenase Subcomplex of the NAD+-Reducing [NiFe] Hydrogenase from Ralstonia eutropha - Insights into Catalysis and Redox Interconversions. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001053] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
27
Horch M, Lauterbach L, Saggu M, Hildebrandt P, Lendzian F, Bittl R, Lenz O, Zebger I. Probing the Active Site of an O2-Tolerant NAD+-Reducing [NiFe]-Hydrogenase from Ralstonia eutropha H16 by In Situ EPR and FTIR Spectroscopy. Angew Chem Int Ed Engl 2010;49:8026-9. [DOI: 10.1002/anie.201002197] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
28
Horch M, Lauterbach L, Saggu M, Hildebrandt P, Lendzian F, Bittl R, Lenz O, Zebger I. Untersuchung des katalytischen Zentrums der O2-toleranten NAD+-reduzierenden [NiFe]-Hydrogenase von Ralstonia eutropha H16 mit In-situ-EPR- und -FTIR-Spektroskopie. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201002197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
29
Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S. Hydrogenases from Methanogenic Archaea, Nickel, a Novel Cofactor, and H2Storage. Annu Rev Biochem 2010;79:507-36. [DOI: 10.1146/annurev.biochem.030508.152103] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
30
Germer F, Zebger I, Saggu M, Lendzian F, Schulz R, Appel J. Overexpression, isolation, and spectroscopic characterization of the bidirectional [NiFe] hydrogenase from Synechocystis sp. PCC 6803. J Biol Chem 2009;284:36462-36472. [PMID: 19801638 DOI: 10.1074/jbc.m109.028795] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
31
Lubitz W, Reijerse E, van Gastel M. [NiFe] and [FeFe] Hydrogenases Studied by Advanced Magnetic Resonance Techniques. Chem Rev 2007;107:4331-65. [PMID: 17845059 DOI: 10.1021/cr050186q] [Citation(s) in RCA: 376] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
32
De Lacey AL, Fernandez VM, Rousset M, Cammack R. Activation and Inactivation of Hydrogenase Function and the Catalytic Cycle:  Spectroelectrochemical Studies. Chem Rev 2007;107:4304-30. [PMID: 17715982 DOI: 10.1021/cr0501947] [Citation(s) in RCA: 364] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
33
Schröder O, Bleijlevens B, de Jongh TE, Chen Z, Li T, Fischer J, Förster J, Friedrich CG, Bagley KA, Albracht SPJ, Lubitz W. Characterization of a cyanobacterial-like uptake [NiFe] hydrogenase: EPR and FTIR spectroscopic studies of the enzyme from Acidithiobacillus ferrooxidans. J Biol Inorg Chem 2006;12:212-33. [PMID: 17082918 DOI: 10.1007/s00775-006-0185-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 09/27/2006] [Indexed: 10/24/2022]
34
Long M, Liu J, Chen Z, Bleijlevens B, Roseboom W, Albracht SPJ. Characterization of a HoxEFUYH type of [NiFe] hydrogenase from Allochromatium vinosum and some EPR and IR properties of the hydrogenase module. J Biol Inorg Chem 2006;12:62-78. [PMID: 16969669 DOI: 10.1007/s00775-006-0162-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
35
Löscher S, Burgdorf T, Zebger I, Hildebrandt P, Dau H, Friedrich B, Haumann M. Bias from H2 Cleavage to Production and Coordination Changes at the Ni−Fe Active Site in the NAD+-Reducing Hydrogenase from Ralstonia eutropha. Biochemistry 2006;45:11658-65. [PMID: 16981725 DOI: 10.1021/bi061068f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA