1
|
Cheng L, Chen H, Ren Y, Cheng Z, Fan M, Liu Y, Shen Z, Yuan T. Study on enhancement of hemoglobin antitoxic ability modified with chromium and ruthenium. Int J Biol Macromol 2023; 242:124756. [PMID: 37178891 DOI: 10.1016/j.ijbiomac.2023.124756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Hemoglobin is essential for carrying oxygen (O2) in the blood. However, its ability to bind excessively to carbon monoxide (CO) makes it susceptible to CO poisoning. To reduce the risk of CO poisoning, Cr-based heme and Ru-based heme were selected from among many transition metal-based hemes based on their characteristics of adsorption conformation, binding intensity, spin multiplicity, and electronic properties. The results showed that hemoglobin modified by Cr-based heme and Ru-based heme had strong anti-CO poisoning abilities. The Cr-based heme and Ru-based heme exhibited much stronger affinity for O2 (-190.67 kJ/mol and -143.18 kJ/mol, respectively) than Fe-based heme (-44.60 kJ/mol). Moreover, Cr-based heme and Ru-based heme exhibited much weaker affinity for CO (-121.50 kJ/mol and -120.88 kJ/mol, respectively) than their affinity for O2, suggesting that they were less likely to cause CO poisoning. The electronic structure analysis also supported this conclusion. Additionally, molecular dynamics analysis showed that hemoglobin modified by Cr-based heme and Ru-based heme was stable. Our findings offer a novel and effective strategy for enhancing the reconstructed hemoglobin's ability to bind O2 and reduce its potential for CO poisoning.
Collapse
Affiliation(s)
- Luwei Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hongjiang Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuanyang Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhiwen Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, PR China
| | - Maohong Fan
- College of Engineering & Applied Science, University of Wyoming, Laramie 82070, WY, USA
| | - Yawei Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200233, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, China.
| | - Tao Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200233, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, China
| |
Collapse
|
2
|
Ramos DR, Furtmüller PG, Obinger C, Peña-Gallego Á, Pérez-Juste I, Santaballa JA. Common Reactivity and Properties of Heme Peroxidases: A DFT Study of Their Origin. Antioxidants (Basel) 2023; 12:antiox12020303. [PMID: 36829861 PMCID: PMC9952403 DOI: 10.3390/antiox12020303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/06/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Electronic structure calculations using the density-functional theory (DFT) have been performed to analyse the effect of water molecules and protonation on the heme group of peroxidases in different redox (ferric, ferrous, compounds I and II) and spin states. Shared geometries, spectroscopic properties at the Soret region, and the thermodynamics of peroxidases are discussed. B3LYP and M06-2X density functionals with different basis sets were employed on a common molecular model of the active site (Fe-centred porphine and proximal imidazole). Computed Gibbs free energies indicate that the corresponding aquo complexes are not thermodynamically stable, supporting the five-coordinate Fe(III) centre in native ferric peroxidases, with a water molecule located at a non-bonding distance. Protonation of the ferryl oxygen of compound II is discussed in terms of thermodynamics, Fe-O bond distances, and redox properties. It is demonstrated that this protonation is necessary to account for the experimental data, and computed Gibbs free energies reveal pKa values of compound II about 8.5-9.0. Computation indicates that the general oxidative properties of peroxidase intermediates, as well as their reactivity towards water and protons and Soret bands, are mainly controlled by the iron porphyrin and its proximal histidine ligand.
Collapse
Affiliation(s)
- Daniel R. Ramos
- Chemical Reactivity & Photoreactivity Group (React!), Department of Chemistry, CICA & Faculty of Sciences, Universidade da Coruña, Campus da Zapateira, E-15071 A Coruña, Spain
- Departamento de Química Física, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, E-36310 Vigo, Spain
- Correspondence: (D.R.R.); (J.A.S.)
| | - Paul G. Furtmüller
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christian Obinger
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Ángeles Peña-Gallego
- Departamento de Química Física, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, E-36310 Vigo, Spain
| | - Ignacio Pérez-Juste
- Departamento de Química Física, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, E-36310 Vigo, Spain
| | - J. Arturo Santaballa
- Chemical Reactivity & Photoreactivity Group (React!), Department of Chemistry, CICA & Faculty of Sciences, Universidade da Coruña, Campus da Zapateira, E-15071 A Coruña, Spain
- Correspondence: (D.R.R.); (J.A.S.)
| |
Collapse
|
3
|
Sui YF, Ansari MF, Zhou CH. Pyrimidinetrione-imidazoles as a Unique Structural Type of Potential Agents towards Candida Albicans: Design, Synthesis and Biological Evaluation. Chem Asian J 2021; 16:1417-1429. [PMID: 33829660 DOI: 10.1002/asia.202100146] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Indexed: 12/15/2022]
Abstract
Substantial morbidity and mortality of fungal infections have aroused concerns all over the world, and common Candida spp. currently bring about severe systemic infections. A series of pyrimidinetrione-imidazole conjugates as potentially antifungal agents were developed. Bioassays manifested that 4-fluobenzyl pyrimidinetrione imidazole 5 f exerted favorable inhibition towards C. albicans (MIC=0.002 mM), being 6.5 folds more active than clinical antifungal drug fluconazole (MIC=0.013 mM). Preliminary mechanism research indicated that compound 5 f could not only depolarize membrane potential but also permeabilize the membrane of C. albicans. Molecular docking was operated to simulate the interaction mode between molecule 5 f and CYP51. In addition, hybrid 5 f might form 5 f-DNA supramolecular complex via intercalating into DNA. The interference of membrane and DNA might contribute to its fungicidal capacity with no obvious tendency to induce the resistance against C. albicans. Conjugate 5 f endowed good blood compatibility as well as low cytotoxicity towards HeLa and HEK-293T cells.
Collapse
Affiliation(s)
- Yan-Fei Sui
- Institute of Bioorganic & Medicinal Chemistry', Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry', Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry', Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
4
|
Kepp KP. Heme isomers substantially affect heme's electronic structure and function. Phys Chem Chem Phys 2018; 19:22355-22362. [PMID: 28805222 DOI: 10.1039/c7cp03285d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inspection of heme protein structures in the protein data bank reveals four isomers of heme characterized by different relative orientations of the vinyl side chains; remarkably, all these have been reported in multiple protein structures. Density functional theory computations explain this as due to similar energy of the isomers but with a sizable (25 kJ mol-1) barrier to interconversion arising from restricted rotation around the conjugated bonds. The four isomers, EE, EZ, ZE, and ZZ, were then investigated as 4-coordinate hemes, as 5-coordinate deoxyhemes, in 6-coordinate O2-adducts of globins and as compound I intermediates typical of heme peroxidases. Substantial differences were observed in electronic properties relevant to heme function: notably, the spin state energy gap of O2-heme adducts, important for fast reversible binding of O2, depends on the isomer state, and O2-binding enthalpies change by up to 16 kJ mol-1; redox potentials change by up to 0.2 V depending on the isomer, and the doublet-quartet energy splitting of compound I, central to "two-state" reactivity, is affected by up to ∼15 kJ mol-1. These effects are consistently seen with three distinct density functionals, i.e. the effects are not method-dependent. Thus, the nature of the isomer state is an important but overlooked feature of heme chemistry and function, and previous and future studies of hemes may be reconsidered in this new context.
Collapse
Affiliation(s)
- Kasper P Kepp
- Technical University of Denmark, DTU Chemistry, Building 206, 2800 Kgs. Lyngby, DK, Denmark.
| |
Collapse
|
5
|
De Petris A, Chiavarino B, Crestoni ME, Coletti C, Re N, Fornarini S. Exploring the Conformational Variability in the Heme b Propionic Acid Side Chains through the Effect of a Biological Probe: A Study of the Isolated Ions. J Phys Chem B 2015; 119:1919-29. [DOI: 10.1021/jp5113476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alberto De Petris
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185, Roma, Italy
| | - Barbara Chiavarino
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185, Roma, Italy
| | - Maria Elisa Crestoni
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185, Roma, Italy
| | - Cecilia Coletti
- Dipartimento
di Farmacia, Università G. D’Annunzio, Via dei Vestini 31, I-66100 Chieti, Italy
| | - Nazzareno Re
- Dipartimento
di Farmacia, Università G. D’Annunzio, Via dei Vestini 31, I-66100 Chieti, Italy
| | - Simonetta Fornarini
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185, Roma, Italy
| |
Collapse
|
6
|
Reprint of PSII manganese cluster: protonation of W2, O5, O4 and His337 in the S1 state explored by combined quantum chemical and electrostatic energy computations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1389-94. [PMID: 25065862 DOI: 10.1016/j.bbabio.2014.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/17/2014] [Accepted: 03/29/2014] [Indexed: 11/22/2022]
Abstract
Photosystem II (PSII) is a membrane-bound protein complex that oxidizes water to produce energized protons, which are used to built up a proton gradient across the thylakoidal membrane in the leafs of plants. This light-driven reaction is catalyzed by withdrawing electrons from the Mn₄CaO₅-cluster (Mn-cluster) in four discrete oxidation steps [S₁-(S₄/S₀)] characterized in the Kok-cycle. In order to understand in detail the proton release events and the subsequent translocation of such energized protons, the protonation pattern of the Mn-cluster need to be elucidated. The new high-resolution PSII crystal structure from Umena, Kawakami, Shen, and Kamiya is an excellent basis to make progress in solving this problem. Following our previous work on oxidation and protonation states of the Mn-cluster, in this work, quantum chemical/electrostatic calculations were performed in order to estimate the pKa of different protons of relevant groups and atoms of the Mn-cluster such as W2, O4, O5 and His337. In broad agreement with previous experimental and theoretical work, our data suggest that W2 and His337 are likely to be in hydroxyl and neutral form, respectively, O5 and O4 to be unprotonated. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
|
7
|
Robertazzi A, Galstyan A, Knapp EW. PSII manganese cluster: protonation of W2, O5, O4 and His337 in the S1 state explored by combined quantum chemical and electrostatic energy computations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1316-21. [PMID: 24721390 DOI: 10.1016/j.bbabio.2014.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/17/2014] [Accepted: 03/29/2014] [Indexed: 10/25/2022]
Abstract
Photosystem II (PSII) is a membrane-bound protein complex that oxidizes water to produce energized protons, which are used to built up a proton gradient across the thylakoidal membrane in the leafs of plants. This light-driven reaction is catalyzed by withdrawing electrons from the Mn₄CaO₅-cluster (Mn-cluster) in four discrete oxidation steps [S₁-(S₄/S₀)] characterized in the Kok-cycle. In order to understand in detail the proton release events and the subsequent translocation of such energized protons, the protonation pattern of the Mn-cluster need to be elucidated. The new high-resolution PSII crystal structure from Umena, Kawakami, Shen, and Kamiya is an excellent basis to make progress in solving this problem. Following our previous work on oxidation and protonation states of the Mn-cluster, in this work, quantum chemical/electrostatic calculations were performed in order to estimate the pKa of different protons of relevant groups and atoms of the Mn-cluster such as W2, O4, O5 and His337. In broad agreement with previous experimental and theoretical work, our data suggest that W2 and His337 are likely to be in hydroxyl and neutral form, respectively, O5 and O4 to be unprotonated. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.
Collapse
Affiliation(s)
- Arturo Robertazzi
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, D-14195 Berlin, Germany
| | - Artur Galstyan
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, D-14195 Berlin, Germany
| | - Ernst Walter Knapp
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, D-14195 Berlin, Germany.
| |
Collapse
|
8
|
Abstract
AbstractAbstract Experimentally-known sulfur-sulfur distances shorter than the sum of van der Waals radii and involving two chemically-identical sulfur atoms are examined at several levels of theory (BP86/6-31G** to CCSD(T)/6-311+G**). None of the theoretical methods predict an attractive interaction from an energetic point of view, even though molecular orbitals stretching between the two sulfur atoms have been identified. Most likely, if there is indeed an attractive interaction force between chemically identical sulfur atoms, its value is comparable to the accuracy of the methods employed here — implying an attractive interaction below 1 kcal/mol. The investigation includes some simple models of 1,6,12,17-tetrathiacyclodocosa-2,4,13,15-tetrayne which was previously shown to have an S—S interaction involving two chemically-identical atoms. Attractive interactions calculated for these latter models are shown to arise from S—HC weak bonding, with the S—S interaction being again repulsive. Graphical abstract
Collapse
|
9
|
Non-canonical interactions of porphyrins in porphyrin-containing proteins. Amino Acids 2013; 43:1535-46. [PMID: 22302367 DOI: 10.1007/s00726-012-1228-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
In this study we have described the noncanonical interactions between the porphyrin ring and the protein part of porphyrin-containing proteins to better understand their stabilizing role. The analysis reported in this study shows that the predominant type of non-canonical interactions at porphyrins are CH····O and CH····N interactions, with a small percentage of CH···π and noncanonical interactions involving sulfur atoms. The majority of non-canonical interactions are formed from side-chains of charged and polar amino acids, whereas backbone groups are not frequently involved. The main-chain noncanonical interactions might be slightly more linear than the side-chain interactions, and they have somewhat shorter median distances. The analysis, performed in this study, shows that about 44% of the total interactions in the dataset are involved in the formation of multiple (furcated) noncanonical interactions. The high number of porphyrin-water interactions show importance of the inclusion of solvent in protein-ligand interaction studies. Furthermore, in the present study we have observed that stabilization centers are composed predominantly from nonpolar amino acid residues. Amino acids deployed in the environment of porphyrin rings are deposited in helices and coils. The results from this study might be used for structure-based porphyrin protein prediction and as scaffolds for future porphyrin-containing protein design.
Collapse
|
10
|
Medaković VB, Bogdanović GA, Milčić MK, Janjić GV, Zarić SD. CH/π interactions in metal–porphyrin complexes with pyrrole and chelate rings as hydrogen acceptors. J Inorg Biochem 2012; 117:157-63. [DOI: 10.1016/j.jinorgbio.2012.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 09/01/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
|
11
|
SHEN XH, HU YL, WANG DC. A Novel Substitution of The Heme-binding Residue Histidine-245 by Histidine-249 in Heme Oxygenase HugZ*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Galstyan A, Robertazzi A, Knapp EW. Oxygen-Evolving Mn Cluster in Photosystem II: The Protonation Pattern and Oxidation State in the High-Resolution Crystal Structure. J Am Chem Soc 2012; 134:7442-9. [DOI: 10.1021/ja300254n] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Artur Galstyan
- Department of Biology,
Chemistry and Pharmacy, Institute
of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 36a, D-14195 Berlin, Germany
| | - Arturo Robertazzi
- Department of Biology,
Chemistry and Pharmacy, Institute
of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 36a, D-14195 Berlin, Germany
| | - Ernst Walter Knapp
- Department of Biology,
Chemistry and Pharmacy, Institute
of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 36a, D-14195 Berlin, Germany
| |
Collapse
|
13
|
Dimitrijević BP, Borozan SZ, Stojanović SĐ. π–π and cation–π interactions in protein–porphyrin complex crystal structures. RSC Adv 2012. [DOI: 10.1039/c2ra21937a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
14
|
Twyman LJ, Ellis A, Gittins PJ. Pyridine encapsulated hyperbranched polymers as mimetic models of haeme containing proteins, that also provide interesting and unusual porphyrin-ligand geometries. Chem Commun (Camb) 2011; 48:154-6. [PMID: 22039580 DOI: 10.1039/c1cc14396d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This communication describes the use of non-covalent chemistry to construct recyclable porphyrin cored HBPs. The non-covalent design allows the polymeric backbone to be rescued and reused after porphyrin degradation. The steric environment within the polymeric encapsulated ligand notably affected the porphyrin coordination geometry.
Collapse
Affiliation(s)
- Lance J Twyman
- Department of Chemistry, The University of Sheffield, Sheffield, S3 7HF, UK.
| | | | | |
Collapse
|
15
|
Jenkins RM, Singleton ML, Leamer LA, Reibenspies JH, Darensbourg MY. Orientation and stereodynamic paths of planar monodentate ligands in square planar nickel N2S complexes. Inorg Chem 2010; 49:5503-14. [PMID: 20507173 DOI: 10.1021/ic1002012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The well-established presence of histidine donors in binding sites of Ni-containing biomolecules prompts the study of orientational preference and stereodynamic nature of flat monodentate ligands (L = imidazoles, pyridine and an N-heterocyclic carbene) bound to planar N(2)SNi moieties. Square planar [N(2)SNiL](n+) complexes are accessed through bridge-splitting reactions of dimeric, thiolate-S bridged [N(2)SNi](2) complexes. The solid state molecular structures of three mononuclear products, and three monothiolate bridged dinickel complexes, reveal that the plane of the added monodentate ligand orients largely orthogonal to the N(2)SNiL square plane. Variable temperature (1)H NMR characterization of dynamic processes and ground state isomer ratios of imidazole complexes in their stopped exchange limiting spectra, readily correlate with density functional theory (DFT)-guided interpretation of Ni-L rotational activation barriers. Full DFT characterization finds Ni-L bond lengthening as well as a tetrahedral twist distortion in the transition state, reaching a maximum in the NHC complex, and relating mainly to the steric hindrance derived both from the ligand and the binding pocket. In the case of the imidazole ligands a minor electronic contribution derives from intramolecular electrostatic interactions (imidazole C-2 C-H(delta+)- - S(delta-) interaction). Computational studies find this donor-acceptor interaction is magnified in O-analogues, predicting coplanar arrangements in the ground state of N(2)ON(imid)Ni complexes.
Collapse
Affiliation(s)
- Roxanne M Jenkins
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
16
|
Gámiz-Hernández AP, Kieseritzky G, Galstyan AS, Demir-Kavuk O, Knapp EW. Understanding properties of cofactors in proteins: redox potentials of synthetic cytochromes b. Chemphyschem 2010; 11:1196-206. [PMID: 20411561 DOI: 10.1002/cphc.200900889] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Haehnel et al. synthesized 399 different artificial cytochrome b (aCb) models. They consist of a template-assisted four-helix bundle with one embedded heme group. Their redox potentials were measured and cover the range from -148 to -89 mV. No crystal structures of these aCb are available. Therefore, we use the chemical composition and general structural principles to generate atomic coordinates of 31 of these aCb mutants, which are chosen to cover the whole interval of redox potentials. We start by modeling the coordinates of one aCb from scratch. Its structure remains stable after energy minimization and during molecular dynamics simulation over 2 ns. Based on this structure, coordinates of the other 30 aCb mutants are modeled. The calculated redox potentials for these 31 aCb agree within 10 mV with the experimental values in terms of root mean square deviation. Analysis of the dependence of heme redox potential on protein environment shows that the shifts in redox potentials relative to the model systems in water are due to the low-dielectric medium of the protein and the protonation states of the heme propionic acid groups, which are influenced by the surrounding amino acids. Alternatively, we perform a blind prediction of the same redox potentials using an empirical approach based on a linear scoring function and reach a similar accuracy. Both methods are useful to understand and predict heme redox potentials. Based on the modeled structure we can understand the detailed structural differences between aCb mutants that give rise to shifts in heme redox potential. On the other hand, one can explore the correlation between sequence variations and aCb redox potentials more directly and on much larger scale using the empirical prediction scheme, which--thanks to its simplicity--is much faster.
Collapse
Affiliation(s)
- Ana P Gámiz-Hernández
- Freie Universität Berlin, FB Biology, Chemistry, Pharmacy, Institute of Chemistry & Biochemistry, Fabeckstr. 36a, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
17
|
Molecular modeling and dynamics simulation of a histidine-tagged cytochrome b 5. J Mol Model 2010; 17:971-8. [DOI: 10.1007/s00894-010-0795-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 06/25/2010] [Indexed: 12/17/2022]
|
18
|
Jenkins RM, Singleton ML, Almaraz E, Reibenspies JH, Darensbourg MY. Imidazole-containing (N3S)-Ni(II) complexes relating to nickel containing biomolecules. Inorg Chem 2009; 48:7280-93. [PMID: 19572492 PMCID: PMC2908898 DOI: 10.1021/ic900778k] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dimeric (N(2)S)Ni complexes and the monomeric N(2)S(2) bismercaptodiazacycloheptane nickel complex, (bme-dach)Ni, serve as precursors to two N(2)-, N'-/ S- complexes where N(2) = diazacycloheptane, N' = imidazole and S = thiolate. As rare examples of nickel complexes containing a mixed thiolate/imidazole ligand set, these complexes are characterized by X-ray diffraction, UV/vis, and variable temperature (1)H NMR spectroscopies, and electrochemistry. Density functional theory computations relate the orientation of the imidazole with respect to the N(2)N'SNi square plane to the VT NMR observed fluxionality and activation parameters. The superoxide dismutase activity of the imidazole complexes was investigated by the nitroblue tetrazolium assay.
Collapse
Affiliation(s)
- Roxanne M. Jenkins
- Department of Chemistry, Texas A&M University, College Station, Texas 77843
| | | | - Elky Almaraz
- Department of Chemistry, Texas A&M University, College Station, Texas 77843
| | | | | |
Collapse
|
19
|
Merlino A, Vergara A, Sica F, Mazzarella L. The bis-histidyl complex in hemoproteins: A detailed conformational analysis of database protein structures and the case of Antarctic fish hemoglobins. Mar Genomics 2009; 2:51-6. [DOI: 10.1016/j.margen.2009.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 04/09/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
|
20
|
Galstyan A, Knapp EW. Accurate redox potentials of mononuclear iron, manganese, and nickel model complexes*. J Comput Chem 2009; 30:203-11. [DOI: 10.1002/jcc.21029] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Fufezan C, Zhang J, Gunner MR. Ligand preference and orientation in b- and c-type heme-binding proteins. Proteins 2008; 73:690-704. [PMID: 18491383 DOI: 10.1002/prot.22097] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hemes are often incorporated into designed proteins. The importance of the heme ligand type and its orientation is still a matter of debate. Here, heme ligands and ligand orientation were investigated using a nonredundant (87 structures) and a redundant (1503 structures) set of structures to compare and contrast design features of natural b- and c-type heme-binding proteins. Histidine is the most common ligand. Marked differences in ligation motifs between b- and c-type hemes are higher occurrence of His-Met in c-type heme binding motifs (16.4% vs. 1.4%) and higher occurrence of exchangeable, small molecules in b-type heme binding motifs (67.6% vs. 9.9%). Histidine ligands that are part of the c-type CXXCH heme-binding motif show a distinct asymmetric distribution of orientation. They tend to point between either the heme propionates or between the NA and NB heme nitrogens. Molecular mechanics calculations show that this asymmetry is due to the bonded constraints of the covalent attachment between the heme and the protein. In contrast, the orientations of b-type hemes histidine ligands are found evenly distributed with no preference. Observed histidine heme ligand orientations show no dominating influence of electrostatic interactions between the heme propionates and the ligands. Furthermore, ligands in bis-His hemes are found more frequently perpendicular rather than parallel to each other. These correlations support energetic constraints on ligands that can be used in designing proteins.
Collapse
Affiliation(s)
- Christian Fufezan
- Physics Department, City College of New York, New York, New York 10031, USA.
| | | | | |
Collapse
|
22
|
Comparing the electronic properties and docking calculations of heme derivatives on CYP2B4. J Mol Model 2008; 14:537-45. [DOI: 10.1007/s00894-008-0294-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 02/21/2008] [Indexed: 11/25/2022]
|
23
|
Stojanović SD, Medaković VB, Predović G, Beljanski M, Zarić SD. XH/pi interactions with the pi system of porphyrin ring in porphyrin-containing proteins. J Biol Inorg Chem 2007; 12:1063-71. [PMID: 17659366 DOI: 10.1007/s00775-007-0276-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 06/28/2007] [Indexed: 11/29/2022]
Abstract
Searching structures of porphyrin-containing proteins from the Protein Data Bank revealed that the pi system of every porphyrin ring is involved in XH/pi interactions, with most of the porphyrins having several interactions. Both five-membered pyrrole rings and six-membered chelate rings are involved in XH/pi interactions; the number of interactions with five-membered rings is larger than the number of interactions with six-membered rings. We found interactions with C-H and N-H groups as hydrogen-atom donors; however, the number of CH/pi interactions is much larger than the number of NH/pi interactions. The amino acids involved in the interactions show a high conservation score. Our results that every porphyrin is involved in XH/pi interactions and that amino acids involved in these interactions are highly conserved demonstrate that XH/pi interactions play an important role in porphyrin-protein stability.
Collapse
Affiliation(s)
- Srdan D Stojanović
- Department of Chemistry, University of Belgrade, Studentski trg 16, 11001 Belgrade, Serbia
| | | | | | | | | |
Collapse
|
24
|
Furlan S, Penna GL, Banci L, Mealli C. Ab initio molecular dynamics of heme in cytochrome c. J Phys Chem B 2007; 111:1157-64. [PMID: 17266270 DOI: 10.1021/jp062609d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ab initio molecular dynamics (AIMD) calculations, based on the Car-Parrinello method, have been carried out for three models of heme c that is present in cytochrome c. Both the reduced (Fe(II)) and oxidized (Fe(III)) forms have been analyzed. The simplest models (1R and 1O, respectively) consist of a unsubstituted porphyrin (with no side chains) and two axially coordinated imidazole and ethylmethylthioether ligands. Density functional theory optimizations of these models confirm the basic electronic features and are the starting point for building more complex derivatives. AIMD simulations were performed after reaching the thermal stability at T = 300 K. The evolution of the Fe-L(ax) bond strengths is examined together with the relative rotations of the imidazole and methionine about the axial vector, which appear rather independent from each other. The next models (2R and 2O) contain side chains at the heme to better simulate the actual active site. It is observed that two adjacent propionate groups induce some important effects. The axial Fe-Sdelta bond is only weakened in 2R but is definitely cleaved in the oxidized species 2O. Also the mobility of the Im ligand seems to be reduced by the formation of a strong hydrogen bond that involves the Im Ndelta1-Hdelta1 bond and one carboxylate group. In 2O the interaction becomes so strong that a proton transfer occurs and the propionic acid is formed. Finally, the models 3 include a free N-methyl-acetamide molecule to mimic a portion of the protein backbone. This influences the orientation of carboxylate groups and limits the amount of their hydrogen bonding with the Im ligand. Residual electrostatic interactions are maintained, which are still able to modulate the dissociation of the methionine from the heme.
Collapse
Affiliation(s)
- Sara Furlan
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | | | | | | |
Collapse
|
25
|
Milcic MK, Medaković VB, Sredojević DN, Juranić NO, Zarić SD. Electron delocalization mediates the metal-dependent capacity for CH/pi interactions of acetylacetonato chelates. Inorg Chem 2007; 45:4755-63. [PMID: 16749840 DOI: 10.1021/ic051926g] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CH/pi interactions between the coordinated acetylacetonato ligand and phenyl rings were analyzed in the crystal structures from the Cambridge Structural Database and by quantum chemical calculations. The acetylacetonato ligand may engage in two types of interactions: it can be hydrogen atom donor or acceptor. The analysis of crystal structures and calculations show that interactions with the acetylacetonato ligand acting as hydrogen atom donor depend on the metal in an acetylacetonato chelate ring; the chelate rings with soft metals make stronger interactions. The same trend was not observed in the interactions where the acetylacetonato chelate ring acts as the hydrogen atom acceptor.
Collapse
Affiliation(s)
- Milos K Milcic
- Department of Chemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia and Montenegro
| | | | | | | | | |
Collapse
|
26
|
La Penna G, Furlan S, Banci L. Molecular statistics of cytochrome c: structural plasticity and molecular environment. J Biol Inorg Chem 2006; 12:180-93. [PMID: 17053911 DOI: 10.1007/s00775-006-0178-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 09/19/2006] [Indexed: 10/24/2022]
Abstract
Nuclear magnetic resonance experiments performed on yeast mitochondrial cytochrome c (Cytc), a paradigmatic electron transfer protein, reveal that the two oxidation states have similar structures, but different mobility: despite the few structural differences compared with the reduced form, the oxidized form displays a larger unfolding propensity. Molecular dynamics simulations performed on both NMR reduced and NMR oxidized forms show that the reduced form has a larger solvent-accessible surface area (SASA). Starting from this observation, a molecular statistical approach was then applied in order to correlate the molecular surface to molecular mobility. Simulations started from biased initial conditions corresponding to different molecular sizes were combined with the maximal constrained entropy method. The NMR structure of oxidized Cytc is more suited to expose a smaller SASA than the NMR structure of the reduced form, but the accessible conformational landscape at 300 K around the NMR oxidized structure is flatter than for the NMR reduced structure. Protein configurations of smaller SASA and size display larger plasticity when they resemble the NMR oxidized structure, whereas they are more rigid when they resemble the NMR reduced structure. Implications of the results for the protein properties during its functional process are discussed.
Collapse
Affiliation(s)
- Giovanni La Penna
- Institute for Macromolecular Studies, National Research Council, Via De Marini 6, 16149, Genoa, Italy.
| | | | | |
Collapse
|
27
|
Gunner MR, Mao J, Song Y, Kim J. Factors influencing the energetics of electron and proton transfers in proteins. What can be learned from calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:942-68. [PMID: 16905113 PMCID: PMC2760439 DOI: 10.1016/j.bbabio.2006.06.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 06/07/2006] [Accepted: 06/13/2006] [Indexed: 11/15/2022]
Abstract
A protein structure should provide the information needed to understand its observed properties. Significant progress has been made in developing accurate calculations of acid/base and oxidation/reduction reactions in proteins. Current methods and their strengths and weaknesses are discussed. The distribution and calculated ionization states in a survey of proteins is described, showing that a significant minority of acidic and basic residues are buried in the protein and that most of these remain ionized. The electrochemistry of heme and quinones are considered. Proton transfers in bacteriorhodopsin and coupled electron and proton transfers in photosynthetic reaction centers, 5-coordinate heme binding proteins and cytochrome c oxidase are highlighted as systems where calculations have provided insight into the reaction mechanism.
Collapse
Affiliation(s)
- M R Gunner
- Physics Department City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
28
|
Schmidt Am Busch M, Knapp EW. One-Electron Reduction Potential for Oxygen- and Sulfur-Centered Organic Radicals in Protic and Aprotic Solvents. J Am Chem Soc 2005; 127:15730-7. [PMID: 16277514 DOI: 10.1021/ja0526923] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We estimated one-electron reduction potentials of redox-active organic molecules for a spectrum of eight different functional groups (phenoxyl, p-benzoquinone, phenylthiyl, p-benzodithiyl, carboxyl, benzoyloxyl, carbthiyl, and benzoylthiyl) in protic (water) and aprotic (acetonitrile, N,N-dimethylacetamide) solvents. Electron affinities (EA) were evaluated in a vacuum with high level quantum chemical methods using Gaussian3-MP2 (G3MP2) and Becke 3 Lee, Yang, and Parr functional B3LYP with aug-cc-pVTZ basis set. To evaluate one-electron redox potentials, gas-phase free energies were combined with solvation energies obtained in a two-step computational approach. First, atomic partial charges were determined in a vacuum by the quantum chemical method B3LYP/6-31G(d,p). Second, solvation energies were determined, solving the Poisson equation with these atomic partial charges. Redox potentials computed this way, compared to experimental data for the 21 considered organic compounds in different solvents, yielded overall root-mean-square deviations of 0.058 and 0.131 V using G3MP2 or B3LYP to compute electronic energies, respectively, while B3LYP/6-31G(d,p) was used to compute solvation energies.
Collapse
Affiliation(s)
- Marcel Schmidt Am Busch
- Department of Biology, Chemistry, and Pharmacy, Institute of Chemistry and Biochemistry, Free University of Berlin, Takustrasse 6, 14195 Berlin, Germany
| | | |
Collapse
|