1
|
Ahmed S, Rafi UM, Senthil Kumar R, Bhat AR, Berredjem M, Niranjan V, C L, Rahiman AK. Theoretical, antioxidant, antidiabetic and in silico molecular docking and pharmacokinetics studies of heteroleptic oxovanadium(IV) complexes of thiosemicarbazone-based ligands and diclofenac. J Biomol Struct Dyn 2024; 42:8407-8426. [PMID: 37599509 DOI: 10.1080/07391102.2023.2246565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
A series of new heteroleptic oxovanadium(IV) complexes with the general formula [VOL1-6(Dcf)] (1-6), where L1-6 = thiosemicarbazone (TSC)-based ligands and Dcf = diclofenac have been synthesized and characterized. The spectral studies along with the density functional theory calculations evidenced the distorted square-pyramidal geometry around oxovanadium(IV) ion through imine nitrogen and thione sulfur atoms of TSC moiety, and two asymmetric carboxylate oxygen atoms of diclofenac drug. The complexes were evaluated for in vitro antioxidant activity using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2'-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2) and superoxide radical scavenging assays with respect to the standard antioxidant drugs butylated hydroxyanisole (BHA) and rutin. The in vitro antidiabetic activity of the complexes was tested with enzymes such as α-amylase, α-glucosidase and glucose-6-phosphatase. The complexes containing methyl substituent showed higher activity than that containing the nitro substituent due to the electron-donating effect of methyl group. The in silico molecular docking studies of the oxovanadium(IV) complexes with α-amylase and α-glucosidase enzymes showed strong interaction via hydrogen bonding and hydrophobic interactions. The dynamic behavior of the proposed complexes was analyzed by molecular dynamics (MDs) simulations, which revealed the stability of docked structures with α-amylase and α-glucosidase enzymes. The in silico physicochemical and pharmacokinetics parameters, such as Lipinski's 'rule of five', Veber's rule and absorption, distribution, metabolism and excretion (ADME) properties predicted non-toxic, non-carcinogenic and safe oral administration of the synthesized complexes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sumeer Ahmed
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, India
| | - Ummer Muhammed Rafi
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, India
| | - Raju Senthil Kumar
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Elayampalayam, Tiruchengodu, India
| | - Ajmal Rashid Bhat
- Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar-Annaba University, Annaba, Algeria
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bengaluru, India
| | - Lavanya C
- Department of Biotechnology, RV College of Engineering, Bengaluru, India
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, India
| |
Collapse
|
2
|
Kazek G, Głuch-Lutwin M, Mordyl B, Menaszek E, Kubacka M, Jurowska A, Cież D, Trzewik B, Szklarzewicz J, Papież MA. Vanadium Complexes with Thioanilide Derivatives of Amino Acids: Inhibition of Human Phosphatases and Specificity in Various Cell Models of Metabolic Disturbances. Pharmaceuticals (Basel) 2024; 17:229. [PMID: 38399444 PMCID: PMC10892041 DOI: 10.3390/ph17020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In the text, the synthesis and characteristics of the novel ONS-type vanadium (V) complexes with thioanilide derivatives of amino acids are described. They showed the inhibition of human protein tyrosine phosphatases (PTP1B, LAR, SHP1, and SHP2) in the submicromolar range, as well as the inhibition of non-tyrosine phosphatases (CDC25A and PPA2) similar to bis(maltolato)oxidovanadium(IV) (BMOV). The ONS complexes increased [14C]-deoxy-D-glucose transport into C2C12 myocytes, and one of them, VC070, also enhanced this transport in 3T3-L1 adipocytes. These complexes inhibited gluconeogenesis in hepatocytes HepG2, but none of them decreased lipid accumulation in the non-alcoholic fatty liver disease model using the same cells. Compared to the tested ONO-type vanadium complexes with 5-bromosalicylaldehyde and substituted benzhydrazides as Schiff base ligand components, the ONS complexes revealed stronger inhibition of protein tyrosine phosphatases, but the ONO complexes showed greater activity in the cell models in general. Moreover, the majority of the active complexes from both groups showed better effects than VOSO4 and BMOV. Complexes from both groups activated AKT and ERK signaling pathways in hepatocytes to a comparable extent. One of the ONO complexes, VC068, showed activity in all of the above models, including also glucose utilizatiand ONO Complexes are Inhibitors ofon in the myocytes and glucose transport in insulin-resistant hepatocytes. The discussion section explicates the results within the wider scope of the knowledge about vanadium complexes.
Collapse
Affiliation(s)
- Grzegorz Kazek
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Monika Głuch-Lutwin
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Barbara Mordyl
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Elżbieta Menaszek
- Department of Cytobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Monika Kubacka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Anna Jurowska
- Coordination Chemistry Group, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Dariusz Cież
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Bartosz Trzewik
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Janusz Szklarzewicz
- Coordination Chemistry Group, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Monika A Papież
- Department of Cytobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| |
Collapse
|
3
|
Shaik A, Kondaparthy V, Begum A, Husain A, Manwal DD. Enzyme PTP-1B Inhibition Studies by Vanadium Metal Complexes: a Kinetic Approach. Biol Trace Elem Res 2023; 201:5037-5052. [PMID: 36652102 DOI: 10.1007/s12011-023-03557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
The medical field now needs more novel drugs to treat obesity and type-2 diabetes mellitus (T2D) than ever before. Obesity and T2D are both characterized by resistance to the hormones leptin and insulin. PTP-1B is a promising target for drug growth, as strong genetic, pharmacological, and biochemical evidence points to the possibility of treating diabetes and obesity by blocking the PTP-1B enzyme. Studies have also found that PTP-1B is overexpressed in patients with diabetes and obesity, suggesting that inhibiting PTP-1B may be a useful technique in their care. There are no clinically used PTP-1B inhibitors, despite the fact that numerous naturally occurring PTP-1B inhibitors have demonstrated great therapeutic promise. This is most likely due to their low activity or lack of selectivity. It is still important to look for more effective and focused PTP-1B inhibitors. A few organovanadium metal complexes were synthesized and characterized, and binding studies on vanadium complexes with PTP-B were also performed using fluorescence emission spectroscopy. Additionally, we theoretically (molecular modeling) and experimentally (enzyme kinetics) examined the PTP-1B inhibitory effects of these vanadium metal complexes and found that they have excellent PTP-1B inhibitory properties.
Collapse
Affiliation(s)
- Ayub Shaik
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India.
| | - Vani Kondaparthy
- Department of Chemistry, Tara Government College (A), Sangareddy, Telangana, India
| | - Alia Begum
- Department of Chemistry, Telangana Mahila Vishwavidyalaya, Hyderabad, Telangana, India
| | - Ameena Husain
- Department of Chemistry, Telangana Mahila Vishwavidyalaya, Hyderabad, Telangana, India
| | - Deva Das Manwal
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
| |
Collapse
|
4
|
Synthesis, characterization, molecular docking and biological evaluation of Schiff Base derivatives of cefpodoxime. Heliyon 2022; 8:e11332. [PMID: 36387450 PMCID: PMC9649975 DOI: 10.1016/j.heliyon.2022.e11332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/06/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Synthesis of new Cefpodoxime derivatives via Schiff Bases mechanism and the efficiency of their antimicrobial and antiviral activities were addressed. They were analyzed for structural validation by using spectroscopic techniques using FTIR, 1HNMR, and 13CNMR. Molecular docking against IBV Virus papain-like protease (PLPro) was done with Auto dock tools against compounds having excellent IC50 values against IBV (Corona Class) virus. All derivatives showed strong zone of inhibition ranges from (55 ± 2.0 to 70 ± 0.8 mm) against E. coli. Compounds 1,2,4 and 6 derivatives showed remarkable activity against Stenotrophomonas maltophilia and Serratia marcescens. But For most the newly synthesized derivatives C1 (64 ± 1.60), C3 (32 ± 0.80), and C8 (64 ± 1.60) showed potential IC50 values against two variants of Corona class viruses i.e. Avian Influenza (H9) and Avian corona (IBV) viruses. The current study revealed that newly synthesized Schiff Bases possessed strong anti-viral potential. Further studies may make a breakthrough in medical sciences to tackle latest challenges such as Corona Virus Diseases.
Collapse
|
5
|
Jia H, Niu M, Sun R, Wang A, Wu YB, Lu L, Zhu M, Feng S, Yuan C. Crystal structure, TCPTP inhibition and cytotoxicity of the cobalt(II) complex with the 4‐{[3‐(pyridine‐2‐yl)‐1H‐pyrazol‐1‐yl]methyl}‐benzoic acid ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Kostrzewa T, Jończyk J, Drzeżdżon J, Jacewicz D, Górska-Ponikowska M, Kołaczkowski M, Kuban-Jankowska A. Synthesis, In Vitro, and Computational Studies of PTP1B Phosphatase Inhibitors Based on Oxovanadium(IV) and Dioxovanadium(V) Complexes. Int J Mol Sci 2022; 23:7034. [PMID: 35806035 PMCID: PMC9267097 DOI: 10.3390/ijms23137034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
One of the main goals of recent bioinorganic chemistry studies has been to design and synthesize novel substances to treat human diseases. The promising compounds are metal-based and metal ion binding components such as vanadium-based compounds. The potential anticancer action of vanadium-based compounds is one of area of investigation in this field. In this study, we present five oxovanadium(IV) and dioxovanadium(V) complexes as potential PTP1B inhibitors with anticancer activity against the MCF-7 breast cancer cell line, the triple negative MDA-MB-231 breast cancer cell line, and the human keratinocyte HaCaT cell line. We observed that all tested compounds were effective inhibitors of PTP1B, which correlates with anticancer activity. [VO(dipic)(dmbipy)]·2 H2O (Compound 4) and [VOO(dipic)](2-phepyH)·H2O (Compound 5) possessed the greatest inhibitory effect, with IC50 185.4 ± 9.8 and 167.2 ± 8.0 nM, respectively. To obtain a better understanding of the relationship between the structure of the examined compounds and their activity, we performed a computer simulation of their binding inside the active site of PTP1B. We observed a stronger binding of complexes containing dipicolinic acid with PTP1B. Based on our simulations, we suggested that the studied complexes exert their activity by stabilizing the WPD-loop in an open position and limiting access to the P-loop.
Collapse
Affiliation(s)
- Tomasz Kostrzewa
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Jakub Jończyk
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland; (J.J.); (M.K.)
| | - Joanna Drzeżdżon
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland; (J.D.); (D.J.)
| | - Dagmara Jacewicz
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland; (J.D.); (D.J.)
| | - Magdalena Górska-Ponikowska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
- IEMEST Istituto Euro-Mediterraneo di Scienza e Tecnologia, 90127 Palermo, Italy
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70174 Stuttgart, Germany
| | - Marcin Kołaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland; (J.J.); (M.K.)
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| |
Collapse
|
7
|
Shaik A, Kondaparthy V, Aveli R, Vemulapalli L, Manwal DD. Vanadium metal complexes’ inhibition studies on enzyme PTP‐1B and anti‐diabetic activity studies on Wistar rats. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ayub Shaik
- Department of Chemistry Osmania University Hyderabad Telangana India
| | - Vani Kondaparthy
- Department of Chemistry Osmania University Hyderabad Telangana India
| | - Rambabu Aveli
- Department of Science & Humanities St. Martin’s Engineering College, Dhulapally Hyderabad Telangana India
| | | | - Deva Das Manwal
- Department of Chemistry Osmania University Hyderabad Telangana India
| |
Collapse
|
8
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
9
|
Yu F, Wang Y, Teng Y, Yang S, He Y, Zhang Z, Yang H, Ding CF, Zhou P. Interaction and Inhibition of a Ganoderma lucidum Proteoglycan on PTP1B Activity for Anti-diabetes. ACS OMEGA 2021; 6:29804-29813. [PMID: 34778653 PMCID: PMC8582033 DOI: 10.1021/acsomega.1c04244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/18/2021] [Indexed: 05/05/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and an effective target for the treatment of type 2 diabetes (T2D). A natural hyperbranched proteoglycan extracted from Ganoderma lucidum, namely, Fudan-Yueyang G. Lucidum (FYGL), was demonstrated capable of inhibiting the activity of PTP1B. Here, to identify the effective active components of FYGL, three different components, the polysaccharide FYGL-1, proteoglycans FYGL-2, and FYGL-3, were isolated from FYGL, and then, the protein moiety of FYGL-3 was further separated, namely, FYGL-3-P. Their abilities to enhance the glucose uptake in cells and inhibit the activity of PTP1B were compared. The inhibitory mechanisms were systematically explored by spectroscopic methods and MD simulations. The results showed that FYGL-3 and FYGL-3-P significantly enhanced the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, detected by the glucose oxidase method. Also, the FYGL-3-P protein moiety in FYGL played an essential role in inhibiting the activity of PTP1B. A strong, enthalpy-driven, and multitargeted interaction by electrostatic forces between PTP1B and FYGL-3-P dramatically inhibited the catalytic activity of PTP1B. These results provided deep insights into the molecular mechanisms of FYGL inhibiting the activity of PTP1B and structurally helped researchers seek natural PTP1B inhibitors.
Collapse
Affiliation(s)
- Fanzhen Yu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yingxin Wang
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yilong Teng
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Shutong Yang
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Yanming He
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P. R. China
| | - Zeng Zhang
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P. R. China
| | - Hongjie Yang
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P. R. China
| | - Chuan-Fan Ding
- Department
of Chemistry, Fudan University, Shanghai 200433, China
- Zhejiang
Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular
Analysis, Institute of Mass Spectrometry, School of Material Science
and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ping Zhou
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- . Phone/Fax: (+86)021-31244038
| |
Collapse
|
10
|
Li X, Niu M, Wang A, Lu L, Englert U, Feng S, Zhang L, Yuan C. Synthesis, structure and in vitro biological properties of a new copper(II) complex with 4-{[3-(pyridin-2-yl)-1H-pyrazol-1-yl]methyl}benzoic acid. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2021; 77:641-648. [PMID: 34607987 DOI: 10.1107/s2053229621009748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/18/2021] [Indexed: 11/10/2022]
Abstract
The new copper(II) complex dichloridobis(4-{[3-(pyridin-2-yl-κN)-1H-pyrazol-1-yl-κN2]methyl}benzoic acid)copper(II) methanol sesquisolvate hemihydrate, [CuCl2L2]·1.5CH3OH·0.5H2O, (1), has been synthesized from CuCl2·2H2O and the ligand 4-{[3-(pyridin-2-yl)-1H-pyrazol-1-yl]methyl}benzoic acid (L, C15H11N3O2). The complex was characterized by elemental analysis, Fourier transform IR spectroscopy, electrospray ionization mass spectrometry and single-crystal X-ray diffraction. Two chloride ligands and two bidentate L ligands coordinate the CuII centre in 1 in a Jahn-Teller-distorted octahedral geometry of rather unusual configuration: a chloride substituent and a pyrazole N atom of an N,N'-chelating ligand occupy the more distant axial positions. Classical O-H...O hydrogen bonds and O-H...Cl interactions link neighbouring complex molecules and cocrystallized methanol molecules into chains that propagate parallel to the b direction. The title compound shows intriguing bioactivity: the effects of 1 on the enzymatic activity of protein tyrosine phosphatase 1B (PTP1B) and on the viability of human breast cancer cells of cell line MCF7 were evaluated. Complex 1, with an IC50 value of 0.51 µM, can efficiently inhibit PTP1B activity. An enzyme kinetic assay suggests that 1 inhibits PTP1B in a noncompetitive manner. A fluorescence titration assay indicates that 1 has a strong affinity for PTP1B, with a binding constant of 4.39 × 106 M-1. Complex 1 may also effectively decrease the viability of MCF7 cells in an extent comparable to that of cisplatin (IC50 = 6.3 µM). The new copper complex therefore represents a promising PTP1B inhibitor and an efficient antiproliferation reagent against MCF7 cells.
Collapse
Affiliation(s)
- Xinhua Li
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, Shanxi Province, People's Republic of China
| | - Mengyuan Niu
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, Shanxi Province, People's Republic of China
| | - Ai Wang
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, Shanxi Province, People's Republic of China
| | - Liping Lu
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, Shanxi Province, People's Republic of China
| | - Ulli Englert
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg. 1, Aachen 52074, Germany
| | - Sisi Feng
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, Shanxi Province, People's Republic of China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi Province, People's Republic of China
| | - Caixia Yuan
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, Shanxi Province, People's Republic of China
| |
Collapse
|
11
|
Wang J, Li X, Yuan C, Su F, Wu YB, Lu L, Zhu M, Xing S, Fu X. Syntheses, crystal structures, and biological evaluations of new dinuclear platinum(ii) complexes with 1,2,4-triazole derivatives as bridging ligands. Dalton Trans 2021; 50:4527-4538. [PMID: 33725030 DOI: 10.1039/d0dt03285a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of new dinuclear platinum(ii) complexes with the general formula [Pt2(μ-HL)4] (1-4), where H2L is 4-[(5-chloro-2-hydroxy-benzylidene)-amino]-3-R-1,2,4-triazole-5-thione: R = H (1), methyl (2), ethyl (3) and propyl (4), were synthesized and characterized. The X-ray crystal structures of 2, 3 and 4 reveal that the two platinum atoms form a paddlewheel core with four chelating triazole ligands as bridges, revealing a radically different structure than those of the traditional anticancer platinum(ii) complexes. These complexes show higher in vitro antiproliferative activity against human liver hepatocellular carcinoma (HepG2) and human breast adenocarcinoma (MCF7) than human lung cancer (A549) and human normal hepatocyte (HL-7702) cell lines. In particular, 3 exhibits antiproliferative activity (IC50 = 5.5 μM) against HepG2 cells comparable to that of cisplatin. Different from the traditional anticancer platinum(ii) complexes with high DNA affinity, 3 binds very weakly to DNA. Upon comparison, it exhibits potent inhibiting activity against protein tyrosine phosphatases 1B (PTP1B, IC50 = 16 μM) through possible binding to its active sites and its binding constant is 5.28 × 104 M-1. The results suggest that the antiproliferative mechanism of 3 against HepG2 cells may be different from that of cisplatin.
Collapse
Affiliation(s)
- Jianwei Wang
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, Shanxi, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Afzal H, Khan NUH, Sultana K, Mobashar A, Lareb A, Khan A, Gull A, Afzaal H, Khan MT, Rizwan M, Imran M. Schiff Bases of Pioglitazone Provide Better Antidiabetic and Potent Antioxidant Effect in a Streptozotocin-Nicotinamide-Induced Diabetic Rodent Model. ACS OMEGA 2021; 6:4470-4479. [PMID: 33623853 PMCID: PMC7893790 DOI: 10.1021/acsomega.0c06064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Pioglitazone is a Food and Drug Administration-approved thiazolidinedione (TZD) derivative and peroxisome proliferator-activated receptor gamma (PPARγ) agonist and used for the treatment of diabetes mellitus (DM). However, this drug is still associated with many adverse effects. In the present study, four new Schiff bases of pioglitazone (P1-P4) were synthesized and characterized using FTIR, 1HNMR, 13CNMR, mass spectrometry, and elemental analysis. For preliminary screening, the in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and in vitro alpha-amylase antidiabetic inhibitory assay were performed. Further, P3 was used to investigate in vivo antioxidant and in vivo antidiabetic effects in a streptozotocin-nicotinamide-induced diabetic rat model. Diabetic rats were administered with an i.p dose of pioglitazone 10 mg/kg body weight for 21 days. Moreover, biochemical parameters and antioxidants were quantified from liver and kidney tissues of rodents. In the DPPH assay, compound P3 showed superior antioxidant effects. Using the in vitro α-amylase inhibitory assay, P3 exhibited potent effects as compared to other groups, that is, 93% inhibition, while pioglitazone showed 81% inhibition. Enzymatic and nonenzymatic antioxidants showed significant changes in P3 (10 mg/kg)-treated groups (p < 0.001). Similarly, compound P3 produced significant and better results in comparison to pioglitazone in the rodent model. This study confirmed potent antidiabetic and superior antioxidant potential of the newly synthesized Schiff base (P3), which could ultimately account for insulin sensitization and for cellular protection and hence provide a potential clue for dual therapeutics.
Collapse
Affiliation(s)
- Hafiza
Rabia Afzal
- Department
of Pharmacy, The University of Lahore, Defense Road Campus, Lahore 54000, Pakistan
| | - Najm ul Hassan Khan
- Department
of Pharmacy, The University of Lahore, Defense Road Campus, Lahore 54000, Pakistan
| | - Kishwar Sultana
- Department
of Pharmacy, The University of Lahore, Defense Road Campus, Lahore 54000, Pakistan
| | - Aisha Mobashar
- Department
of Pharmacy, The University of Lahore, Defense Road Campus, Lahore 54000, Pakistan
| | - Aqsa Lareb
- Department
of Pharmacy, The University of Lahore, Defense Road Campus, Lahore 54000, Pakistan
| | - Ayesha Khan
- Department
of Pharmacy, The University of Lahore, Defense Road Campus, Lahore 54000, Pakistan
| | - Abrashim Gull
- Department
of Pharmacy, The University of Lahore, Defense Road Campus, Lahore 54000, Pakistan
| | - Hasan Afzaal
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Islamabad 44000 Pakistan
| | - Muhammad Tariq Khan
- Faculty
of Pharmacy, Capital University of Science
and Technology, Islamabad 44000, Pakistan
| | - Muhammad Rizwan
- Center
for Biotechnology and Microbiology, University
of Swat, Swat, Khyber Pakhtunkhwa 44000, Pakistan
| | - Muhammad Imran
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Islamabad 44000 Pakistan
| |
Collapse
|
13
|
Affiliation(s)
| | | | - S. M. Rahatul Alam
- Department of Chemistry, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
14
|
Benjamín-Rivera JA, Cardona-Rivera AE, Vázquez-Maldonado ÁL, Dones-Lassalle CY, Pabón-Colon HL, Rodríguez-Rivera HM, Rodríguez I, González-Espiet JC, Pazol J, Pérez-Ríos JD, Catala-Torres JF, Carrasquillo Rivera M, De Jesus-Soto MG, Cordero-Virella NA, Cruz-Maldonado PM, González-Pagan P, Hernández-Ríos R, Gaur K, Loza-Rosas SA, Tinoco AD. Exploring Serum Transferrin Regulation of Nonferric Metal Therapeutic Function and Toxicity. INORGANICS 2020; 8:48. [PMID: 36844373 PMCID: PMC9957567 DOI: 10.3390/inorganics8090048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Serum transferrin (sTf) plays a pivotal role in regulating iron biodistribution and homeostasis within the body. The molecular details of sTf Fe(III) binding blood transport, and cellular delivery through transferrin receptor-mediated endocytosis are generally well-understood. Emerging interest exists in exploring sTf complexation of nonferric metals as it facilitates the therapeutic potential and toxicity of several of them. This review explores recent X-ray structural and physiologically relevant metal speciation studies to understand how sTf partakes in the bioactivity of key non-redox active hard Lewis acidic metals. It challenges preconceived notions of sTf structure function correlations that were based exclusively on the Fe(III) model by revealing distinct coordination modalities that nonferric metal ions can adopt and different modes of binding to metal-free and Fe(III)-bound sTf that can directly influence how they enter into cells and, ultimately, how they may impact human health. This knowledge informs on biomedical strategies to engineer sTf as a delivery vehicle for metal-based diagnostic and therapeutic agents in the cancer field. It is the intention of this work to open new avenues for characterizing the functionality and medical utility of nonferric-bound sTf and to expand the significance of this protein in the context of bioinorganic chemistry.
Collapse
Affiliation(s)
- Josué A. Benjamín-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Andrés E. Cardona-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | | | - Héctor L. Pabón-Colon
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | - Israel Rodríguez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Jean C. González-Espiet
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Jessika Pazol
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Jobaniel D. Pérez-Ríos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - José F. Catala-Torres
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | - Michael G. De Jesus-Soto
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | - Paola M. Cruz-Maldonado
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Patricia González-Pagan
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Raul Hernández-Ríos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Kavita Gaur
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Sergio A. Loza-Rosas
- Departamento de Química y Bioquímica, Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja 150003, Colombia
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
- Correspondence: ; Tel.: +1-939-319-9701
| |
Collapse
|
15
|
Xue LW, Zhang HJ, Wang PP. Synthesis, crystal structures, and antimicrobial activity of copper(II) complexes derived from N′-(1-(pyridin-2-yl)ethylidene)isonicotinohydrazide. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1723627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ling-Wei Xue
- College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan Henan, P.R. China
| | - Hui-Jie Zhang
- College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan Henan, P.R. China
| | - Pan-Pan Wang
- College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan Henan, P.R. China
| |
Collapse
|
16
|
Deghadi RG, Mahmoud WH, Mohamed GG. Metal complexes of tetradentate azo‐dye ligand derived from 4,4′‐oxydianiline: Preparation, structural investigation, biological evaluation and MOE studies. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Reem G. Deghadi
- Chemistry Department, Faculty of Science Cairo University Giza 12613 Egypt
| | - Walaa H. Mahmoud
- Chemistry Department, Faculty of Science Cairo University Giza 12613 Egypt
- Egypt Nanotechnology Center Cairo University El‐Sheikh Zayed, 6th October City, Giza 12588 Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science Cairo University Giza 12613 Egypt
- Egypt Nanotechnology Center Cairo University El‐Sheikh Zayed, 6th October City, Giza 12588 Egypt
| |
Collapse
|
17
|
Xue LW, Han YJ, Luo XQ. Nickel(II) Complexes Derived from Bis-Schiff Bases: Synthesis, Crystal Structures, and Antimicrobial Activity. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420020098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Lin L, Lu L, Du R, Yuan C, Zhu M, Fu X, Xing S. A Ce(iii) complex potently inhibits the activity and expression of tyrosine phosphatase SHP-2. Dalton Trans 2019; 48:17673-17682. [PMID: 31763642 DOI: 10.1039/c9dt03200b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Four new Ce(iii) complexes 1-4 with tridentate NNO-donor Schiff base ligands have been designed and successfully synthesized. These complexes were characterized by elemental analysis, IR, and ESI-MS, with formulas of [Ce(HL1)2(NO3)3]·2CH3OH (1), [Ce(L2)2(NO3)]·3H2O (2), [Ce(HL3)(L3)(NO3)Br]·H2O (3) and [Ce(L4)2(NO3)]·3H2O (4), in which ligands HL1-HL4 are respectively N'-[(1E)-pyridin-2-ylmethylidene]pyrazine-2-carbohydrazide (HL1), 2-(1-(salicyloylhydrazono)ethyl)pyrazine (HL2), N'-[(1E)-pyridin-2-ylmethylidene]pyridine-2-carbohydrazide (HL3) and 2-(1-(salicyloylhydrazono)ethyl) pyridine (HL4). X-ray single crystal diffraction analysis indicates that complex 1 crystallizes in the monoclinic system with the space group C2/c and the structure of complex 1 consists of a monomeric Ce(iii) species with a Ce(iii) moiety bonded to two tridentate Schiff base ligands, three nitrates and solvents. These complexes effectively inhibit the enzyme activities of PTPs (SHP-1, SHP-2, TCPTP and PTP1B), among which complex 3 shows the most potent inhibition of SHP-2 with the lowest IC50 value of 0.61 μM and displays obvious selectivity towards SHP-2. Its inhibition potency against SHP-2 was approximately 17, 4, and 5 fold higher than that against SHP-1, TCPTP and PTP1B, respectively. Further study discloses that complex 3 inhibits SHP-2 in a competitive manner. Fluorescence measurements indicate that complex 3 tightly binds to SHP-2 with a molar ratio of 1 : 1 and a binding constant of 5.45 × 105 M-1. Western blot experiments show that complex 3 promotes the phosphorylation of the SHP-2 substrate by the combination of the inhibition of the activity and expression of SHP-2. Moreover, complex 3 decreases the survival rate of A549 cells to 35.12% at 100 μM and induces apoptosis with an apoptosis rate of 12.06% at 50 μM. All these results suggest that complex 3 is a potential bi-functional inhibitor of the activity and expression of tyrosine phosphatase SHP-2.
Collapse
Affiliation(s)
- Lixia Lin
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Eleftheriou P, Geronikaki A, Petrou A. PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type II. Curr Top Med Chem 2019; 19:246-263. [PMID: 30714526 DOI: 10.2174/1568026619666190201152153] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Diabetes Mellitus (DM), is a metabolic disorder characterized by high blood glucose levels. The main types of diabetes mellitus are Diabetes mellitus type I, Diabetes mellitus type II, gestational diabetes and Diabetes of other etiology. Diabetes type II, the Non Insulin Dependent Type (NIDDM) is the most common type, characterized by the impairment in activation of the intracellular mechanism leading to the insertion and usage of glucose after interaction of insulin with its receptor, known as insulin resistance. Although, a number of drugs have been developed for the treatment of diabetes type II, their ability to reduce blood glucose levels is limited, while several side effects are also observed. Furthermore, none of the market drugs targets the enhancement of the action of the intracellular part of insulin receptor or recuperation of the glucose transport mechanism in GLUT4 dependent cells. The Protein Tyrosine Phosphatase (PTP1b) is the main enzyme involved in insulin receptor desensitization and has become a drug target for the treatment of Diabetes type II. Several PTP1b inhibitors have already been found, interacting with the binding site of the enzyme, surrounding the catalytic amino acid Cys215 and the neighboring area or with the allosteric site of the enzyme, placed at a distance of 20 Å from the active site, around Phe280. However, the research continues for finding more potent inhibitors with increased cell permeability and specificity. OBJECTIVE The aim of this review is to show the attempts made in developing of Protein Tyrosine Phosphatase (PTP1b) inhibitors with high potency, selectivity and bioavailability and to sum up the indications for favorable structural characteristics of effective PTP1b inhibitors. METHODS The methods used include a literature survey and the use of Protein Structure Databanks such as PuBMed Structure and RCSB and the tools they provide. CONCLUSION The research for finding PTP1b inhibitors started with the design of molecules mimicking the Tyrosine substrate of the enzyme. The study revealed that an aromatic ring connected to a polar group, which preferably enables hydrogen bond formation, is the minimum requirement for small inhibitors binding to the active site surrounding Cys215. Molecules bearing two hydrogen bond donor/acceptor (Hb d/a) groups at a distance of 8.5-11.5 Å may form more stable complexes, interacting simultaneously with a secondary area A2. Longer molecules with two Hb d/a groups at a distance of 17 Å or 19 Å may enable additional interactions with secondary sites (B and C) that confer stability as well as specificity. An aromatic ring linked to polar or Hb d/a moieties is also required for allosteric inhibitors. A lower distance between Hb d/a moieties, around 7.5 Å may favor allosteric interaction. Permanent inhibition of the enzyme by oxidation of the catalytic Cys215 has also been referred. Moreover, covalent modification of Cys121, placed near but not inside the catalytic pocket has been associated with permanent inhibition of the enzyme.
Collapse
Affiliation(s)
- Phaedra Eleftheriou
- Department of Medical Laboratory Studies, School of Health and Medical Care, Alexander Technological Educational Institute of Thessaloniki, Thessaloniki 57400, Greece
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
20
|
Identification of novel imidazole flavonoids as potent and selective inhibitors of protein tyrosine phosphatase. Bioorg Chem 2019; 88:102900. [PMID: 30991192 DOI: 10.1016/j.bioorg.2019.03.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/18/2019] [Accepted: 03/30/2019] [Indexed: 01/12/2023]
Abstract
A series of imidazole flavonoids as new type of protein tyrosine phosphatase inhibitors were synthesized and characterized. Most of them gave potent protein phosphatase 1B (PTP1B) inhibitory activities. Especially, compound 11a could effectively inhibit PTP1B with an IC50 value of 0.63 μM accompanied with high selectivity ratio (9.5-fold) over T-cell protein tyrosine phosphatase (TCPTP). This compound is cell permeable with relatively low cytotoxicity. The high binding affinity and selectivity was disclosed by molecular modeling and dynamics studies. The structural features essential for activity were confirmed by quantum chemical studies.
Collapse
|
21
|
Exploration of Zinc(II) Complexes as Potent Inhibitors Against Protein Tyrosine Phosphatase 1B. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8265-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Synthesis, ADME, docking studies and in vivo anti-hyperglycaemic potential estimation of novel Schiff base derivatives from octadec-9-enoic acid. Bioorg Chem 2019; 84:478-492. [DOI: 10.1016/j.bioorg.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 11/22/2022]
|
23
|
Biswas N, Bera S, Sepay N, Mukhopadhyay TK, Acharya K, Ghosh S, Acharyya S, Biswas AK, Drew MGB, Ghosh T. Synthesis, characterization, and cytotoxic and antimicrobial activities of mixed-ligand hydrazone complexes of variable valence VO z+ ( z = 2, 3). NEW J CHEM 2019. [DOI: 10.1039/c9nj04171k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mixed-ligand complexes of VO2+ and VO3+ motifs incorporating a family of hydrazone ligands were reported, which exhibited promising cytotoxic activity against lung cancer cell line and antimicrobial activity against four pathogenic bacterial stains.
Collapse
Affiliation(s)
- Nirmalendu Biswas
- Post Graduate Department of Chemistry
- Ramakrishna Mission Vivekananda Centenary College
- Kolkata-700118
- India
| | - Sachinath Bera
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Nayim Sepay
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Titas Kumar Mukhopadhyay
- Department of Spectroscopy
- Indian Association for the Cultivation of Science
- Jadavpur
- Kolkata-700032
- India
| | | | - Sandipta Ghosh
- Department of Botany
- University of Calcutta
- Kolkata-700019
- India
| | - Swarnali Acharyya
- Department of Pathology and Cell Biology
- Columbia University
- New York
- USA
| | - Anup Kumar Biswas
- Herbert Irving Comprehensive Cancer Centre
- Columbia University
- New York
- USA
| | | | - Tapas Ghosh
- Post Graduate Department of Chemistry
- Ramakrishna Mission Vivekananda Centenary College
- Kolkata-700118
- India
| |
Collapse
|
24
|
Cepeda J, Beobide G, Castillo O, Luque A, Pérez-Yáñez S. Structural diversity of coordination compounds derived from double-chelating and planar diazinedicarboxylate ligands. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Martinie RJ, Pollock CJ, Matthews ML, Bollinger JM, Krebs C, Silakov A. Vanadyl as a Stable Structural Mimic of Reactive Ferryl Intermediates in Mononuclear Nonheme-Iron Enzymes. Inorg Chem 2017; 56:13382-13389. [PMID: 28960972 DOI: 10.1021/acs.inorgchem.7b02113] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The iron(II)- and 2-(oxo)glutarate-dependent (Fe/2OG) oxygenases catalyze an array of challenging transformations via a common iron(IV)-oxo (ferryl) intermediate, which in most cases abstracts hydrogen (H•) from an aliphatic carbon of the substrate. Although it has been shown that the relative disposition of the Fe-O and C-H bonds can control the rate of H• abstraction and fate of the resultant substrate radical, there remains a paucity of structural information on the actual ferryl states, owing to their high reactivity. We demonstrate here that the stable vanadyl ion [(VIV-oxo)2+] binds along with 2OG or its decarboxylation product, succinate, in the active site of two different Fe/2OG enzymes to faithfully mimic their transient ferryl states. Both ferryl and vanadyl complexes of the Fe/2OG halogenase, SyrB2, remain stably bound to its carrier protein substrate (l-aminoacyl-S-SyrB1), whereas the corresponding complexes harboring transition metals (Fe, Mn) in lower oxidation states dissociate. In the well-studied taurine:2OG dioxygenase (TauD), the disposition of the substrate C-H bond relative to the vanadyl ion defined by pulse electron paramagnetic resonance methods is consistent with the crystal structure of the reactant complex and computational models of the ferryl state. Vanadyl substitution may thus afford access to structural details of the key ferryl intermediates in this important enzyme class.
Collapse
Affiliation(s)
| | | | - Megan L Matthews
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | |
Collapse
|
26
|
Xie MJ, Zhu MR, Lu CM, Jin Y, Gao LH, Li L, Zhou J, Li FF, Zhao QH, Liu HK, Sadler PJ, Sanchez-Cano C. Synthesis and characterization of oxidovanadium complexes as enzyme inhibitors targeting dipeptidyl peptidase IV. J Inorg Biochem 2017; 175:29-35. [PMID: 28692886 DOI: 10.1016/j.jinorgbio.2017.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/28/2022]
Abstract
Two oxidovanadium(IV) complexes carrying Schiff base ligands obtained from the condensation of 4,5-dichlorobenzene-1,2-diamine and salicylaldehyde derivatives were synthesised and characterised, including their X-ray crystallographic structures. They were evaluated as dipeptidyl peptidase IV (DPP-IV) inhibitors for the treatment of type 2 diabetes. These compounds were moderate inhibitors of DPP-IV, with IC50 values of ca. 40μM. In vivo tests showed that complexes 1 and 2 could lower significantly the level of glucose in the blood of alloxan-diabetic mice at doses of 22.5mgV·kg-1 and 29.6mgV·kg-1, respectively. Moreover, molecular modeling studies suggested that the oxidovanadium complexes 1 and 2 could fit well into the active-site cleft of the kinase domain of DPP-IV. To the best of our knowledge, this is the first report of vanadium complexes capable of inhibiting DPP-IV.
Collapse
Affiliation(s)
- Ming-Jin Xie
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China.
| | - Ming-Rong Zhu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Chun-Mei Lu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Yi Jin
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Li-Hui Gao
- Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ling Li
- Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jie Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Fan-Fang Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Qi Hua Zhao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Carlos Sanchez-Cano
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
27
|
Jia Y, Lu L, Zhu M, Yuan C, Xing S, Fu X. A dioxidovanadium (V) complex of NNO-donor Schiff base as a selective inhibitor of protein tyrosine phosphatase 1B: Synthesis, characterization, and biological activities. Eur J Med Chem 2017; 128:287-292. [PMID: 28199951 DOI: 10.1016/j.ejmech.2017.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 12/13/2022]
Abstract
A new dioxidovanadium (V) complex, VO2(HPPCH) (1) (H2PPCH = N'-picolinoylpyridin-1-ium-2-carbohydrazonate) has been synthesized and characterized by elemental analysis, IR, X-ray diffraction analysis and electrospray ionization mass spectra. Complex 1 crystallized in the monoclinic system with space group P21/c. It potently inhibited PTP1B with IC50 of 0.13 μM, about 7, 15 and 125-fold stronger against PTP1B than over TCPTP, SHP-1 and SHP-2, displaying obvious selectivity against PTP1B. Western blotting analysis indicated that complex 1 effectively increased the phosphorylation of PTP1B substrates, especially the phosphorylation of IR/IGF 1R and IRS-1. It exhibited lower cytotoxicity than positive control VOSO4. These results make complex 1 a promising candidate for novel anti-diabetic drug development.
Collapse
Affiliation(s)
- Yuqi Jia
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan 030006, Shanxi, People's Republic of China
| | - Liping Lu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan 030006, Shanxi, People's Republic of China.
| | - Miaoli Zhu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan 030006, Shanxi, People's Republic of China.
| | - Caixia Yuan
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan 030006, Shanxi, People's Republic of China
| | - Shu Xing
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China.
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| |
Collapse
|
28
|
Hu XM, Zhao GQ, Xue LW, Yang WC. Synthesis, crystal structure, and antimicrobial activity of a novel chlorido-bridged dinuclear manganese(III) complex derived from N,N′-bis(5-methylsalicylidene)diethylenetriamine. INORG NANO-MET CHEM 2017. [DOI: 10.1080/15533174.2016.1149726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xiao-Ming Hu
- College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan, Henan, P. R. China
| | - Gan-Qing Zhao
- College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan, Henan, P. R. China
| | - Ling-Wei Xue
- College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan, Henan, P. R. China
| | - Wei-Chun Yang
- College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan, Henan, P. R. China
| |
Collapse
|
29
|
Scalese G, Correia I, Benítez J, Rostán S, Marques F, Mendes F, Matos AP, Costa Pessoa J, Gambino D. Evaluation of cellular uptake, cytotoxicity and cellular ultrastructural effects of heteroleptic oxidovanadium(IV) complexes of salicylaldimines and polypyridyl ligands. J Inorg Biochem 2016; 166:162-172. [PMID: 27865131 DOI: 10.1016/j.jinorgbio.2016.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/13/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Searching for prospective vanadium-based drugs for cancer treatment, a new series of structurally related [VIVO(L-2H)(NN)] compounds (1-8) was developed. They include a double deprotonated salicylaldimine Schiff base ligand (L-2H) and different NN-polypyridyl co-ligands having DNA intercalating capacity. Compounds were characterized in solid state and in solution. EPR spectroscopy suggests that the NN ligands act as bidentate and bind through both nitrogen donor atoms in an axial-equatorial mode. The cytotoxicity was evaluated in human tumoral cells (ovarian A2780, breast MCF7, prostate PC3). The cytotoxic activity was dependent on type of cell and incubation time. At 24h PC3 cells presented low sensitivity, but at 72h all complexes showed high cytotoxic activity in all cells. Human kidney HEK293 and ovarian cisplatin resistant A2780cisR cells were also included to evaluate selectivity towards cancer cells and potency to overcome cisplatin resistance, respectively. Most complexes showed no detectable interaction with plasmid DNA, except 2 and 7 which depicted low ability to induce single strand breaks in supercoiled DNA. Based on the overall cytotoxic profile, complexes with 2,2´-bipyridine and 1,10-phenanthroline ligands (1 and 2) were selected for further studies, which consisted on cellular distribution and ultrastructural analyses. In the A2780 cells both depicted different distribution profiles; the former accumulates mostly at the membrane and the latter in the cytoskeleton. Morphology of treated cells showed nuclear atypia and membrane alterations, more severe for 1. Complexes induce different cell death pathways, predominantly necrosis for 1 and apoptosis for 2. Complexes alternative mode of cell death motivates the possibility for further developments.
Collapse
Affiliation(s)
- Gonzalo Scalese
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800, Montevideo, Uruguay
| | - Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Julio Benítez
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800, Montevideo, Uruguay
| | - Santiago Rostán
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800, Montevideo, Uruguay
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - António Pedro Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário, Quinta da Granja, Monte de Caparica, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001, Lisboa, Portugal.
| | - Dinorah Gambino
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800, Montevideo, Uruguay.
| |
Collapse
|
30
|
Yasmeen S, Sumrra SH, Akram MS, Chohan ZH. Antimicrobial metal-based thiophene derived compounds. J Enzyme Inhib Med Chem 2016; 32:106-112. [PMID: 27766891 PMCID: PMC6009934 DOI: 10.1080/14756366.2016.1238363] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A novel series of thiophene derived Schiff bases and their transition metal- [Co(II), Cu(II), Zn(II), Ni(II)] based compounds are reported. The Schiff bases act as tridentate ligands toward metal ions via azomethine-N, deprotonated-N of ammine substituents and S-atom of thienyl moiety. The synthesized ligands along with their metal complexes were screened for their in vitro antibacterial activity against six bacterial pathogens (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella typhi, Staphylococcus aureus and Bacillus subtilis) and for antifungal activity against six fungal pathogens (Trichophytonlongifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata). The results of antimicrobial studies revealed the free ligands to possess potential activity which significantly increased upon chelation.
Collapse
Affiliation(s)
- Shakeela Yasmeen
- a Institute of Chemical Sciences , Bahauddin Zakariya University , Multan , Pakistan
| | | | | | - Zahid H Chohan
- d Department of Chemistry , University of Sargodha , Bhakkar Campus, Sargodha, Pakistan
| |
Collapse
|
31
|
Naskar B, Modak R, Maiti DK, Kumar Mandal S, Kumar Biswas J, Kumar Mondal T, Goswami S. Syntheses and non-covalent interactions of naphthalene-bearing Schiff base complexes of Zn(II), Co(III), Cu(II) and V(IV): Selective detection of Zn(II). Polyhedron 2016. [DOI: 10.1016/j.poly.2016.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Hu XM, Zhao GQ, Xue LW, Yang WC. Synthesis, crystal structures, and antimicrobial activity of copper(II) and zinc(II) complexes derived from 2-bromo-4-chloro-6-[(2-morpholin-4-ylethylimino)methyl]phenol. RUSS J COORD CHEM+ 2016. [DOI: 10.1134/s107032841605002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Biswas N, Patra D, Mondal B, Drew MG, Ghosh T. Synthesis of mixed-ligand complexes of VO2+ and VO3+ incorporating hydrazone, 1,10-phenanthroline and 8-hydroxyquinoline. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1107054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Nirmalendu Biswas
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Debashis Patra
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Bipul Mondal
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | | | - Tapas Ghosh
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| |
Collapse
|
34
|
Fik MA, Gorczyński A, Kubicki M, Hnatejko Z, Wadas A, Kulesza PJ, Lewińska A, Giel-Pietraszuk M, Wyszko E, Patroniak V. New vanadium complexes with 6,6″-dimethyl-2,2′:6′,2″-terpyridine in terms of structure and biological properties. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Hu XM, Xue LW, Zhao GQ, Yang WC. A hetero trinuclear manganese(III)-iron(II) complex derived from N,N′-bis(5-chlorosalicylidene)-1,2-diaminoethane: Synthesis, crystal structure, and antimicrobial activity. RUSS J COORD CHEM+ 2015. [DOI: 10.1134/s1070328415080011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Mathavan A, Ramdass A, Rajagopal S. A Spectroscopy Approach for the Study of the Interaction of Oxovanadium(IV)-Salen Complexes with Proteins. J Fluoresc 2015; 25:1141-9. [PMID: 26139532 DOI: 10.1007/s10895-015-1604-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/15/2015] [Indexed: 11/26/2022]
Abstract
Oxovanadium(IV)-salen complexes bind with bovine serum albumin (BSA) and ovalbumin (OVA) strongly with binding constant in the range 10(4)-10(7) M(-1) at physiological pH (7.4) confirmed using UV-visible absorption, fluorescence spectral and circular dichroism (CD) study. CD results show that the binding of oxovanadium(IV) complexes induces the conformational change with the loss of α-helicity in the proteins. Docking studies indicate that mode of binding of oxovanadium(IV)-salen complexes with proteins is hydrophobic in nature.
Collapse
Affiliation(s)
- Alagarsamy Mathavan
- Department of Chemistry, V. O. Chidambaram College, Tuticorin, 628 008, India
| | | | | |
Collapse
|
37
|
Hu XM, Xue LW, Zhao GQ, Yang WC. Synthesis, structures, and biological activity of terbium(III) and cobalt(III) complexes derived from tripodal Schiff bases. RUSS J COORD CHEM+ 2015. [DOI: 10.1134/s1070328415030045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Oxidovanadium(IV) complexes involving dehydroacetic acid and β-diketones of bioinorganic and medicinal relevance: Their synthesis, characterization, thermal behavior and DFT aspects. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.11.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Lankelma M, de Boer J, Ferbinteanu M, Dantas Ramos AL, Tanasa R, Rothenberg G, Tanase S. A novel one-dimensional chain built of vanadyl ions and pyrazine-2,5-dicarboxylate. Dalton Trans 2015; 44:11380-7. [DOI: 10.1039/c5dt01628b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Stand in line – a vanadium salt and a pyrazine ligand self-assemble to a linear coordination polymer.
Collapse
Affiliation(s)
- Marianne Lankelma
- Van't Hoff Institute for Molecular Sciences
- University of Amsterdam
- Science Park 904
- 1098 XH Amsterdam
- The Netherlands
| | - Jeroen de Boer
- Van't Hoff Institute for Molecular Sciences
- University of Amsterdam
- Science Park 904
- 1098 XH Amsterdam
- The Netherlands
| | - Marilena Ferbinteanu
- Faculty of Chemistry
- Inorganic Chemistry Department
- University of Bucharest
- Bucharest 020462
- Romania
| | - André Luis Dantas Ramos
- Van't Hoff Institute for Molecular Sciences
- University of Amsterdam
- Science Park 904
- 1098 XH Amsterdam
- The Netherlands
| | - Radu Tanasa
- Department of Physics & CARPATH
- “Alexandru Ioan Cuza” University of Iasi
- Iasi 700506
- Romania
| | - Gadi Rothenberg
- Van't Hoff Institute for Molecular Sciences
- University of Amsterdam
- Science Park 904
- 1098 XH Amsterdam
- The Netherlands
| | - Stefania Tanase
- Van't Hoff Institute for Molecular Sciences
- University of Amsterdam
- Science Park 904
- 1098 XH Amsterdam
- The Netherlands
| |
Collapse
|
40
|
Liu QR, Xue LW, Zhao GQ. Manganese(III) complexes derived from bis-Schiff bases: Synthesis, structures, and antimicrobial activity. RUSS J COORD CHEM+ 2014. [DOI: 10.1134/s1070328414100066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Fedorova EV, Buryakina AV, Zakharov AV, Filimonov DA, Lagunin AA, Poroikov VV. Design, synthesis and pharmacological evaluation of novel vanadium-containing complexes as antidiabetic agents. PLoS One 2014; 9:e100386. [PMID: 25057899 PMCID: PMC4109918 DOI: 10.1371/journal.pone.0100386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 05/27/2014] [Indexed: 11/19/2022] Open
Abstract
Based on the data about structure and antidiabetic activity of twenty seven vanadium and zinc coordination complexes collected from literature we developed QSAR models using the GUSAR program. These QSAR models were applied to 10 novel vanadium coordination complexes designed in silico in order to predict their hypoglycemic action. The five most promising substances with predicted potent hypoglycemic action were selected for chemical synthesis and pharmacological evaluation. The selected coordination vanadium complexes were synthesized and tested in vitro and in vivo for their hypoglycemic activities and acute rat toxicity. Estimation of acute rat toxicity of these five vanadium complexes was performed using a freely available web-resource (http://way2drug.com/GUSAR/acutoxpredict.html). It has shown that the selected compounds belong to the class of moderate toxic pharmaceutical agents, according to the scale of Hodge and Sterner. Comparison with the predicted data has demonstrated a reasonable correspondence between the experimental and predicted values of hypoglycemic activity and toxicity. Bis{tert-butyl[amino(imino)methyl]carbamato}oxovanadium (IV) and sodium(2,2'-Bipyridyl)oxo-diperoxovanadate(V) octahydrate were identified as the most potent hypoglycemic agents among the synthesized compounds.
Collapse
Affiliation(s)
- Elena V. Fedorova
- Saint-Petersburg State Chemical Pharmaceutical Academy, Ministry of Healthcare and Social Development of Russian Federation, Saint-Petersburg, Russian Federation
| | - Anna V. Buryakina
- Saint-Petersburg State Chemical Pharmaceutical Academy, Ministry of Healthcare and Social Development of Russian Federation, Saint-Petersburg, Russian Federation
| | - Alexey V. Zakharov
- National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Dmitry A. Filimonov
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Alexey A. Lagunin
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Vladimir V. Poroikov
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Moscow, Russian Federation
| |
Collapse
|
42
|
Xie M, Chen D, Zhang F, Willsky GR, Crans DC, Ding W. Effects of vanadium (III, IV, V)-chlorodipicolinate on glycolysis and antioxidant status in the liver of STZ-induced diabetic rats. J Inorg Biochem 2014; 136:47-56. [DOI: 10.1016/j.jinorgbio.2014.03.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 03/23/2014] [Accepted: 03/23/2014] [Indexed: 02/01/2023]
|
43
|
Abstract
SIGNIFICANCE Protein tyrosine phosphatases (PTPs) play essential roles in controlling cell proliferation, differentiation, communication, and adhesion. The dysregulated activities of PTPs are involved in the pathogenesis of a number of human diseases such as cancer, diabetes, and autoimmune diseases. RECENT ADVANCES Many PTPs have emerged as potential new targets for novel drug discovery. PTP inhibitors have attracted much attention. Many PTP inhibitors have been developed. Some of them have been proven to be efficient in lowering blood glucose levels in vivo or inhibiting tumor xenograft growth. CRITICAL ISSUES Some metal ions and metal complexes potently inhibit PTPs. The metal atoms within metal complexes play an important role in PTP binding, while ligand structures influence the inhibitory potency and selectivity. Some metal complexes can penetrate the cell membrane and selectively bind to their targeting PTPs, enhancing the phosphorylation of the related substrates and influencing cellular metabolism. PTP inhibition is potentially involved in the pathophysiological and toxicological processes of metals and some PTPs may be cellular targets of certain metal-based therapeutic agents. FUTURE DIRECTIONS Investigating the structural basis of the interactions between metal complexes and PTPs would facilitate a comprehensive understanding of the structure-activity relationship and accelerate the development of promising metal-based drugs targeting specific PTPs.
Collapse
Affiliation(s)
- Liping Lu
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University , Taiyuan, People's Republic of China
| | | |
Collapse
|
44
|
Cheng GP, Xue LW, Zhang CX. Zinc(II) and nickel(II) complexes derived from 2-bromo-6-[(2-Isopropylaminoethylimino)methyl]phenol: Synthesis, structures, and antimicrobial activity. RUSS J COORD CHEM+ 2014. [DOI: 10.1134/s1070328414040022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Sostarecz AG, Gaidamauskas E, Distin S, Bonetti SJ, Levinger NE, Crans DC. Correlation of insulin-enhancing properties of vanadium-dipicolinate complexes in model membrane systems: phospholipid langmuir monolayers and AOT reverse micelles. Chemistry 2014; 20:5149-59. [PMID: 24615733 DOI: 10.1002/chem.201201803] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/07/2013] [Indexed: 11/10/2022]
Abstract
We explore the interactions of V(III) -, V(IV) -, and V(V) -2,6-pyridinedicarboxylic acid (dipic) complexes with model membrane systems and whether these interactions correlate with the blood-glucose-lowering effects of these compounds on STZ-induced diabetic rats. Two model systems, dipalmitoylphosphatidylcholine (DPPC) Langmuir monolayers and AOT (sodium bis(2-ethylhexyl)sulfosuccinate) reverse micelles present controlled environments for the systematic study of these vanadium complexes interacting with self-assembled lipids. Results from the Langmuir monolayer studies show that vanadium complexes in all three oxidation states interact with the DPPC monolayer; the V(III) -phospholipid interactions result in a slight decrease in DPPC molecular area, whereas V(IV) and V(V) -phospholipid interactions appear to increase the DPPC molecular area, an observation consistent with penetration into the interface of this complex. Investigations also examined the interactions of V(III) - and V(IV) -dipic complexes with polar interfaces in AOT reverse micelles. Electron paramagnetic resonance spectroscopic studies of V(IV) complexes in reverse micelles indicate that the neutral and smaller 1:1 V(IV) -dipic complex penetrates the interface, whereas the larger 1:2 V(IV) complex does not. UV/Vis spectroscopy studies of the anionic V(III) -dipic complex show only minor interactions. These results are in contrast to behavior of the V(V) -dipic complex, [VO2 (dipic)](-) , which penetrates the AOT/isooctane reverse micellar interface. These model membrane studies indicate that V(III) -, V(IV) -, and V(V) -dipic complexes interact with and penetrate the lipid interfaces differently, an effect that agrees with the compounds' efficacy at lowering elevated blood glucose levels in diabetic rats.
Collapse
Affiliation(s)
- Audra G Sostarecz
- Chemistry Department, Monmouth College, 700 E. Broadway, Monmouth, IL 61462 (USA)
| | | | | | | | | | | |
Collapse
|
46
|
Gao XL, Feng SS, Yuan CX, Zhu ML. 2-[(E)-(4-Bromo-phenyl)imino-methyl]-4-chloro-phenol. Acta Crystallogr Sect E Struct Rep Online 2014; 70:o235-6. [PMID: 24764958 PMCID: PMC3998382 DOI: 10.1107/s1600536814000981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/15/2014] [Indexed: 11/19/2022]
Abstract
In the title compound, C13H9BrClNO, the dihedral angle between the substituted benzene rings is 44.25 (11)°. There are strong intra-molecular O-H⋯N hydrogen bonds, which generate S(6) rings, and also inter-molecular Cl⋯Cl [3.431 (3) Å] and Br⋯ Br [3.846 (1) Å] contacts. The crystal packing a C-H⋯O and C-H⋯π inter-actions.
Collapse
Affiliation(s)
- Xiao-Li Gao
- Department of Chemistry, Taiyuan Normal College, Taiyuan, Shanxi 030031, People’s Republic of China
| | - Si-Si Feng
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People’s Republic of China
| | - Cai-Xia Yuan
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People’s Republic of China
| | - Miao-Li Zhu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People’s Republic of China
| |
Collapse
|
47
|
Saha U, Si TK, Nandi PK, Mukherjea KK. An amino acid coordinated vanadium (IV) complex: Synthesis, structure, DFT calculations and VHPO mimicking catalytic bromoperoxidation of organic substrates. INORG CHEM COMMUN 2013. [DOI: 10.1016/j.inoche.2013.09.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Xue LW, Li XW, Zhao GQ, Yang WC. Synthesis, structures, and antimicrobial activity of nickel(II) and zinc(II) complexes with Schiff bases derived from 3-bromosalicylaldehyde. RUSS J COORD CHEM+ 2013. [DOI: 10.1134/s1070328413110092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Al-Qatati A, Fontes FL, Barisas BG, Zhang D, Roess DA, Crans DC. Raft localization of type I Fcε receptor and degranulation of RBL-2H3 cells exposed to decavanadate, a structural model for V2O5. Dalton Trans 2013; 42:11912-20. [PMID: 23861175 DOI: 10.1039/c3dt50398d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vanadium oxides (VOs) have been identified as low molecular weight sensitizing agents associated with occupational asthma and compromised pulmonary immunocompetence. Symptoms of adult onset asthma result, in part, from increased signal transduction by Type I Fcε receptors (FcεRI) leading to release of vasoactive compounds including histamine from mast cells. Exposure to (VOs) typically occurs in the form of particles which are insoluble. Upon contact with water or biological fluids, (VOs) form a series of soluble oxoanions, one of which is decavanadate, V10O28(6-) abbreviated V10, which is structurally related to a common vanadium oxide, that is vanadium pentoxide, V2O5. Here we investigate whether V10 may be initiating plasma membrane events associated with activation of FcεRI signal transduction. We show that exposure of RBL-2H3 cells to V10 causes a concentration-dependent increase in degranulation of RBL-2H3 and, in addition, an increase in plasma membrane lipid packing as measured by the fluorescent probe, di-4-ANEPPDHQ. V10 also increases FcεRI accumulation in low-density membrane fragments, i.e., lipid rafts, which may facilitate FcεRI signaling. To determine whether V10 effects on plasma membrane lipid packing were similarly observed in Langmuir monolayers formed from dipalmitoylphosphatidylcholine (DPPC), the extent of lipid packing in the presence and absence of V10 and vanadate was compared. V10 increased the surface area of DPPC Langmuir monolayers by 6% and vanadate decreased the surface area by 4%. These results are consistent with V10 interacting with this class of membrane lipids and altering DPPC packing.
Collapse
Affiliation(s)
- Abeer Al-Qatati
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | |
Collapse
|
50
|
Debnath M, Dutta A, Biswas S, Das KK, Lee HM, Vícha J, Marek R, Marek J, Ali M. Catalytic oxidation of aromatic hydrocarbons by mono-oxido-alkoxidovanadium(V) complexes of ONNO donor ethylenediamine-bis(phenolate) ligands. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|