1
|
Charlestin V, Tan E, Arias-Matus CE, Wu J, Miranda-Vergara MC, Lee M, Wang M, Nannapaneni DT, Tennakoon P, Blagg BSJ, Ashfeld BL, Kaliney W, Li J, Littlepage LE. Evaluation of the Mammalian Aquaporin Inhibitors Auphen and Z433927330 in Treating Breast Cancer. Cancers (Basel) 2024; 16:2714. [PMID: 39123442 PMCID: PMC11311482 DOI: 10.3390/cancers16152714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
AQPs contribute to breast cancer progression and metastasis. We previously found that genetic inhibition of Aqp7 reduces primary tumor burden and metastasis in breast cancer. In this study, we utilized two AQP inhibitors, Auphen and Z433927330, to evaluate the efficacy of therapeutic inhibition of AQPs in breast cancer treatment. The inhibitors were evaluated in breast cancer for both cytotoxicity and metabolic stability assays across both murine and human breast cancer cell lines. Both AQP inhibitors also affected the expression of other AQP transcripts and proteins, which demonstrates compensatory regulation between AQP family members. As a single agent, Auphen treatment in vivo extended overall survival but did not impact primary or metastatic tumor burden. However, Auphen treatment made cells more responsive to chemotherapy (doxorubicin) or endocrine treatment (tamoxifen, fulvestrant). In fact, treatment with Tamoxifen reduced overall AQP7 protein expression. RNA-seq of breast cancer cells treated with Auphen identified mitochondrial metabolism genes as impacted by Auphen and may contribute to reducing mammary tumor progression, lung metastasis, and increased therapeutic efficacy of endocrine therapy in breast cancer. Interestingly, we found that Auphen and tamoxifen cooperate to reduce breast cancer cell viability, which suggests that Auphen treatment makes the cells more susceptible to Tamoxifen. Together, this study highlights AQPs as therapeutic vulnerabilities of breast cancer metastasis that are promising and should be exploited. However, the pharmacologic results suggest additional chemical refinements and optimization of AQP inhibition are needed to make these AQP inhibitors appropriate to use for therapeutic benefit in overcoming endocrine therapy resistance.
Collapse
Affiliation(s)
- Verodia Charlestin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Elijah Tan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Carlos Eduardo Arias-Matus
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Junmin Wu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Maria Cristina Miranda-Vergara
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
- Biotechnology Department, Life and Health Sciences Deanship, Universidad Popular Autonoma del Estado de Puebla (UPAEP University), 13 Poniente No. 1927, Barrio de Santiago, Puebla 72410, Mexico
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
| | - Man Wang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Dharma T. Nannapaneni
- Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Parinda Tennakoon
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brandon L. Ashfeld
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - William Kaliney
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Jun Li
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Laurie E. Littlepage
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| |
Collapse
|
2
|
Mironov IV, Kharlamova VY, Makotchenko EV. Some remarks on the biological application of gold(III) complexes. Biometals 2024; 37:233-246. [PMID: 37855996 DOI: 10.1007/s10534-023-00545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/23/2023] [Indexed: 10/20/2023]
Abstract
Gold(III) complexes are widely studied as antitumor agents and show good results. The interaction with biologically active thiols (thiomalate, cysteine, glutathione (GSH) and human serum albumin) of a number of gold(III) complexes with N-containing polydentate ligands in aqueous solution with pH 7.4 and 0.2 M NaCl was studied. Complexes with 1,10-phenanthroline and 2,2'-bipyridyl, Au(phen)(OH)2+ and Au(bipy)(OH)2+, react fast with an excess of any of these thiols and in less than a few seconds transform into gold(I) bis-thiolate complexes. For complexes with deprotonated ethylenediamine and diethylenetriamine, Au(en)(en-H)2+ and Au(dien-H)(Cl,OH)+, at a significant excess of GSH, a relatively long-lived gold(III) complex AuIII(GSH)iLj is formed. At t = 37 °C, it transforms into the gold(I) bis-thiolate complex Au(GSH)2 by 90% in 4 h. However, for other thiols, the rate of decomposition of similar complexes is about 10 times higher. Some other complexes were also considered. In all cases, a fairly fast reduction of gold(III) to gold(I) occurs with the formation of the gold(I) bis-thiolates.
Collapse
Affiliation(s)
- Igor V Mironov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Avenue, Novosibirsk, 630090, Russia.
| | - Viktoria Yu Kharlamova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Eugenia V Makotchenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Avenue, Novosibirsk, 630090, Russia
| |
Collapse
|
3
|
Geri A, Massai L, Messori L. Protein Metalation by Medicinal Gold Compounds: Identification of the Main Features of the Metalation Process through ESI MS Experiments. Molecules 2023; 28:5196. [PMID: 37446857 DOI: 10.3390/molecules28135196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Gold compounds form a new class of promising anticancer agents with innovative modes of action. It is generally believed that anticancer gold compounds, at variance with clinically established platinum drugs, preferentially target proteins rather than nucleic acids. The reactions of several gold compounds with a few model proteins have been systematically explored in recent years through ESI MS measurements to reveal adduct formation and identify the main features of those reactions. Here, we focus our attention on a group of five gold compounds of remarkable medicinal interest, i.e., Auranofin, Au(NHC)Cl, [Au(NHC)2]PF6, Aubipyc, and Auoxo6, and on their reactions with four different biomolecular targets, i.e., the proteins HEWL, hCA I, HSA and the C-terminal dodecapeptide of the enzyme thioredoxin reductase. Complete ESI MS data are available for those reactions due to previous experimental work conducted in our laboratory. From the comparative analysis of the ESI MS reaction profiles, some characteristic trends in the metallodrug-protein reactivity may be identified as detailed below. The main features are described and analyzed in this review. Overall, all these observations are broadly consistent with the concept that cytotoxic gold drugs preferentially target cancer cell proteins, with a remarkable selectivity for the cysteine and selenocysteine proteome. These interactions typically result in severe damage to cancer cell metabolism and profound alterations in the redox state, leading to eventual cancer cell death.
Collapse
Affiliation(s)
- Andrea Geri
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Florence, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Florence, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Florence, Italy
| |
Collapse
|
4
|
Lipiec S, Gurba A, Agnieszczak IM, Szczepankiewicz AA, Szymański P, Taciak P, Szczepaniak R, Szeleszczuk Ł, Nieznanska H, Włodarczyk J, Fichna J, Bialy LP, Mlynarczuk-Bialy I. New gold (III) cyanide complex TGS 121 induces ER stress, proteasome inhibition and death of Ras-hyperactivated cells. Toxicol In Vitro 2023; 88:105556. [PMID: 36681286 DOI: 10.1016/j.tiv.2023.105556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/20/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Metal-based agents in cancer therapy, like cisplatin and its derivates, have established clinical applications but also can induce serious side effects. Thus, metallotherapeutic alternatives for platinum derivatives are developed and intensively studied. Platinum is replaced by several transition metals including gold. Especially gold (III) complexes can have the same square-planar structure and are isoelectric with platinum (II). Hence, they are developed as potential anti-cancer drugs. Thus, our group projected and developed a group of novel cyanide-based gold (III) complexes. Within this work, we aimed to characterize the safety and effectivity of one of them, TGS 121. TGS 121 in our preliminary work was selective for Ras-hyperactivated cells. Here we studied the effects of the novel complex in cancerous Ras-3 T3 and non-cancerous NIH-3 T3 cells. The complex TGS 121 turned out to be non-toxic for NIH-3 T3 cells and to induce death and alternations in Ras-hyperactivated cells. We found induction of ER stress, mitochondria swelling, proteasome inhibition, and cell cycle block. Moreover, TGS 121 inhibited cell migration and induced the accumulation of perinuclear organelles that was secondary to proteasome inhibition. Results presented in this report suggest that stable gold-cyanide TGS 121 complex is non-toxic, with a targeted mechanism of action and it is promising in anticancer drug discovery.
Collapse
Affiliation(s)
- Szymon Lipiec
- HESA at the Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Agata Gurba
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| | - Izabela M Agnieszczak
- HESA at the Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Andrzej Antoni Szczepankiewicz
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Ludwika Pasteura 3, 02-093 Warsaw, Poland
| | - Przemysław Szymański
- HESA at the Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Przemysław Taciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| | | | - Łukasz Szeleszczuk
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| | - Hanna Nieznanska
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Ludwika Pasteura 3, 02-093 Warsaw, Poland
| | - Jakub Włodarczyk
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Lukasz P Bialy
- Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Izabela Mlynarczuk-Bialy
- Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland.
| |
Collapse
|
5
|
Mironov IV, Kharlamova VY. Substitution of Cl– by OH– in the Phenanthroline Gold(III) Complex and Its Redox Interaction with Glutathione in Aqueous Solution. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622070166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Gurba A, Taciak P, Sacharczuk M, Młynarczuk-Biały I, Bujalska-Zadrożny M, Fichna J. Gold (III) Derivatives in Colon Cancer Treatment. Int J Mol Sci 2022; 23:724. [PMID: 35054907 PMCID: PMC8775370 DOI: 10.3390/ijms23020724] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. Colorectal cancer (CRC) is the third most frequently diagnosed cancer in men and the second in women. Standard patterns of antitumor therapy, including cisplatin, are ineffective due to their lack of specificity for tumor cells, development of drug resistance, and severe side effects. For this reason, new methods and strategies for CRC treatment are urgently needed. Current research includes novel platinum (Pt)- and other metal-based drugs such as gold (Au), silver (Ag), iridium (Ir), or ruthenium (Ru). Au(III) compounds are promising drug candidates for CRC treatment due to their structural similarity to Pt(II). Their advantage is their relatively good solubility in water, but their disadvantage is an unsatisfactory stability under physiological conditions. Due to these limitations, work is still underway to improve the formula of Au(III) complexes by combining with various types of ligands capable of stabilizing the Au(III) cation and preventing its reduction under physiological conditions. This review summarizes the achievements in the field of stable Au(III) complexes with potential cytotoxic activity restricted to cancer cells. Moreover, it has been shown that not nucleic acids but various protein structures such as thioredoxin reductase (TrxR) mediate the antitumor effects of Au derivatives. The state of the art of the in vivo studies so far conducted is also described.
Collapse
Affiliation(s)
- Agata Gurba
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.T.); (M.S.); (M.B.-Z.)
| | - Przemysław Taciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.T.); (M.S.); (M.B.-Z.)
| | - Mariusz Sacharczuk
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.T.); (M.S.); (M.B.-Z.)
- Department of Genomics, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Izabela Młynarczuk-Biały
- Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.T.); (M.S.); (M.B.-Z.)
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland;
| |
Collapse
|
7
|
Radisavljević S, Scheurer A, Bockfeld D, Ćoćić D, Puchta R, Senft L, Pešić M, Damljanović I, Petrović B. New mononuclear gold(III) complexes: Synthesis, characterization, kinetic, mechanistic, DNA/BSA/HSA binding, DFT and molecular docking studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Au 2phen and Auoxo6, Two Dinuclear Oxo-Bridged Gold(III) Compounds, Induce Apoptotic Signaling in Human Ovarian A2780 Cancer Cells. Biomedicines 2021; 9:biomedicines9080871. [PMID: 34440075 PMCID: PMC8389655 DOI: 10.3390/biomedicines9080871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/01/2023] Open
Abstract
Au2phen ((2,9-dimethyl-1,10-phenanthroline)2Au2(µ-O)2)(PF6)2 and Auoxo6 ((6,6′-dimethyl-2,2′-bipyridine)2Au2(µ-O)2)(PF6)2 are two structurally related gold(III) complexes that were previously reported to display relevant and promising anticancer properties in vitro toward a large number of human cancer cell lines. To expand the knowledge on the molecular mechanisms through which these gold(III) complexes trigger apoptosis in cancer cells, further studies have been performed using A2780 ovarian cancer cells as reference models. For comparative purposes, parallel studies were carried out on the gold(III) complex AuL12 (dibromo(ethylsarcosinedithiocarbamate)gold(III)), whose proapoptotic profile had been earlier characterized in several cancer cell lines. Our results pointed out that all these gold(III) compounds manifest a significant degree of similarity in their cellular and proapoptotic effects; the main observed perturbations consist of potent thioredoxin reductase inhibition, disruption of the cell redox balance, impairment of the mitochondrial membrane potential, and induction of associated metabolic changes. In addition, evidence was gained of the remarkable contribution of ASK1 (apoptosis-signal-regulating kinase-1) and AKT pathways to gold(III)-induced apoptotic signaling. Overall, the observed effects may be traced back to gold(III) reduction and subsequent formation and release of gold(I) species that are able to bind and inhibit several enzymes responsible for the intracellular redox homeostasis, in particular the selenoenzyme thioredoxin reductase.
Collapse
|
9
|
Gamberi T, Pratesi A, Messori L, Massai L. Proteomics as a tool to disclose the cellular and molecular mechanisms of selected anticancer gold compounds. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Anticancer Activity and Apoptosis Induction of Gold(III) Complexes Containing 2,2'-Bipyridine-3,3'-dicarboxylic Acid and Dithiocarbamates. Molecules 2021; 26:molecules26133973. [PMID: 34209921 PMCID: PMC8272064 DOI: 10.3390/molecules26133973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022] Open
Abstract
Three novel gold(III) complexes (1–3) of general composition [Au(Bipydc)(S2CNR2)]Cl2 (Bipydc = 2,2′-bipyridine-3,3′-dicarboxylic acid and R = methyl for dimethyldithiocarbamate (DMDTC), ethyl for diethyldithiocarbamate (DEDTC), and benzyl for dibenzyldithiocarbamate (DBDTC)) have been synthesized and characterized by elemental analysis, FTIR and NMR spectroscopic techniques. The spectral results confirmed the presence of both the Bipydc and dithiocarbamate ligands in the complexes. The in vitro cytotoxic studies demonstrated that compounds 1–3 were highly cytotoxic to A549, HeLa, MDA-231, and MCF-7 cancer cells with activities much higher (about 25-fold) than cisplatin. In order to know the possible mode of cell death complex 2, [Au(Bipydc)(DEDTC)]Cl2 was further tested for induction of apoptosis towards the MCF-7 cells. The results indicated that complex 2 induces cell death through apoptosis.
Collapse
|
11
|
Mirzadeh N, Telukutla SR, Luwor R, Privér S, Velma GR, Jakku RK, Andrew N S, Plebanski M, Christian H, Bhargava S. Dinuclear orthometallated gold(I)-gold(III) anticancer complexes with potent in vivo activity through an ROS-dependent mechanism. Metallomics 2021; 13:6308826. [PMID: 34165566 DOI: 10.1093/mtomcs/mfab039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023]
Abstract
Increasingly explored over the last decade, gold complexes have shown great promise in the field of cancer therapeutics. A major obstacle to their clinical progression has been their lack of in vivo stability, particularly for gold(III) complexes, which often undergo a facile reduction in the presence of biomolecules such as glutathione. Herein, we report a new class of promising anticancer gold(I)-gold(III) complexes with the general formula [XAuI(μ-2-C6F4PPh2)(κ2-2-C6F4PPh2)AuIIIX] [X = Cl (1), Br (2), NO3 (3)] which feature two gold atoms in different oxidation states (I and III) in a single molecule. Interestingly, gold(I)-gold(III) complexes (1-3) are stable against glutathione reduction under physiological-like conditions. In addition, complexes 1-3 exhibit significant cytotoxicity (276-fold greater than cisplatin) toward the tested cancer cells compared to the noncancerous cells. Moreover, the gold(I)-gold(III) complexes do not interact with DNA-like cisplatin but target cellular thioredoxin reductase, an enzyme linked to the development of cisplatin drug resistance. Complexes 1-3 also showed potential to inhibit cancer and endothelial cell migration, as well as tube formation during angiogenesis. In vivo studies in a murine HeLa xenograft model further showed the gold compounds may inhibit tumor growth on par clinically used cisplatin, supporting the significant potential this new compound class has for further development as cancer therapeutic.
Collapse
Affiliation(s)
- Nedaossadat Mirzadeh
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Srinivasa Reddy Telukutla
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Rodney Luwor
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Steven Privér
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Ganga Reddy Velma
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Ranjith Kumar Jakku
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Stephens Andrew N
- Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
| | | | - Hartinger Christian
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Suresh Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
12
|
Abás E, Bellés A, Rodríguez-Diéguez A, Laguna M, Grasa L. Selective cytotoxicity of cyclometalated gold(III) complexes on Caco-2 cells is mediated by G2/M cell cycle arrest. Metallomics 2021; 13:6296427. [PMID: 34114030 DOI: 10.1093/mtomcs/mfab034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022]
Abstract
New cyclometalated gold(III) complexes with a general structure [Au(C^N)(SR)2] or [Au(C^N)Cl(SR)], where C^N is a biphenyl ligand such as 2-(p-tolyl)pyridinate (tpy), 2-phenylpyridinate (ppy) and 2-benzylpyridinate (bzp) (SR = Spym, S(Me)2pym, 2-thiouracil (2-TU) and thiourea), and also with ethynyl moieties of the type [Au(C^N)(C≡C-Ar)2] (Ar = p-toluene and 2-pyridine) have been synthesized. All of them have been characterized, including X-ray studies of complex [Au(bzp)Cl(Spym)], and these studies have permitted to elucidate that leaving chloride ligand is trans located to CAr atom. After the full characterization, physicochemical properties were measured by evaluating drug-like water solubility and cell permeability (partition coefficient). All these experiments pointed that our complexes present adequate properties to be used as anticancer drugs. Although not all the complexes showed antiproliferative effects on Caco-2 cells, those that did were more cytotoxic than cisplatin; and complex [Au(tpy)Cl(2-TU)] is even more active than auranofin. In addition to this effectiveness, no evidence of cytotoxic effects was observed on considered normal cells (with the exception of [Au(bzp)Cl(2-TU)]. Further action mechanisms studies were performed using these selective complexes, showing cell cycle arrest on the G2/M phase, a proapoptotic behaviour and also the modification of some genes involved in tumorigenesis. Thus, as a result of this investigation, we present a new family of 17 cyclometalated complexes, 6 of them being selective and possible candidates to be used against colon cancer.
Collapse
Affiliation(s)
- Elisa Abás
- Instituto de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza-CSIC, Plaza S. Francisco s/n, 50009, Zaragoza, Spain
| | - Andrea Bellés
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Granada, Severo Ochoa s/n, 18071, Granada, Spain
| | - Mariano Laguna
- Instituto de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza-CSIC, Plaza S. Francisco s/n, 50009, Zaragoza, Spain
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Agroalimentario de Aragón -IA2- (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
13
|
Massai L, Zoppi C, Cirri D, Pratesi A, Messori L. Reactions of Medicinal Gold(III) Compounds With Proteins and Peptides Explored by Electrospray Ionization Mass Spectrometry and Complementary Biophysical Methods. Front Chem 2020; 8:581648. [PMID: 33195070 PMCID: PMC7609534 DOI: 10.3389/fchem.2020.581648] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Electrospray ionization mass spectrometry (ESI MS) is a powerful investigative tool to analyze the reactions of metallodrugs with proteins and peptides and characterize the resulting adducts. Here, we have applied this type of approach to four experimental anticancer gold(III) compounds for which extensive biological and mechanistic data had previously been gathered, namely, Auoxo6, Au2phen, AuL12, and Aubipyc. These gold(III) compounds were reacted with two representative proteins, i.e., human serum albumin (HSA) and human carbonic anhydrase I (hCA I), and with the C-terminal dodecapeptide of thioredoxin reductase. ESI MS analysis allowed us to elucidate the nature of the resulting metal-protein adducts from which the main features of the occurring metallodrug-protein reactions can be inferred. In selected cases, MS data were integrated and supported by independent 1HNMR and UV-Vis absorption measurements to gain an overall description of the occurring processes. From data analysis, it emerges that most of the investigated gold(III) complexes, endowed with an appreciable oxidizing character, undergo quite facile reduction to gold(I); the resulting gold(I) species tightly associate with the above proteins/peptides with a remarkable selectivity for free cysteine residues. In contrast, in the case of the less-oxidizing Aubipyc complex, the gold(III) oxidation state is conserved, and a gold(III) fragment still containing the original ligand is found to be associated with the target proteins. It is notable that the C-terminal dodecapeptide of thioredoxin reductase containing the characteristic -Gly-Cys-Sec-Gly metal-binding motif is able in all cases to trigger gold(III)-to-gold(I) reduction. Our investigation allowed us to identify in detail the nature of the gold fragments that ultimately bind the protein targets and determine the exact binding stoichiometry; some insight on the reaction kinetics was also gained. Notably, a few clear correlations could be established between the structure of the metal complexes and the nature of the resulting protein adducts. The mechanistic implications of these findings are analyzed and thoroughly discussed. Overall, the present results set the stage to better understand the real target biomolecules of these gold compounds and elucidate at the atomic level their interaction modes with proteins and peptides.
Collapse
Affiliation(s)
- Lara Massai
- Department of Chemistry, University of Florence, Florence, Italy
| | - Carlotta Zoppi
- Department of Chemistry, University of Florence, Florence, Italy
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Luigi Messori
- Department of Chemistry, University of Florence, Florence, Italy
| |
Collapse
|
14
|
Williams MRM, Bertrand B, Hughes DL, Waller ZAE, Schmidt C, Ott I, O'Connell M, Searcey M, Bochmann M. Cyclometallated Au(iii) dithiocarbamate complexes: synthesis, anticancer evaluation and mechanistic studies. Metallomics 2019; 10:1655-1666. [PMID: 30255182 DOI: 10.1039/c8mt00225h] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A series of cationic mixed cyclometallated (C^N)Au(iii) dithiocarbamate complexes has been synthesized in good yields [HC^N = 2-(p-t-butylphenyl)pyridine]. The crystal structure of [(C^N)AuS2CNEt2]PF6 (3) has been determined. The cytotoxic properties of the new complexes have been evaluated in vitro against a panel of human cancer cell lines and healthy cells and compared with a neutral mixed (C^C)Au(iii) dithiocarbamate complex (C^C = 4,4'-di-t-butylbiphenyl-2,2'-diyl). The complexes appeared to be susceptible to reduction by glutathione but were stable in the presence of N-acetyl cysteine. The potential mechanism of action of this class of compounds has been investigated by measuring the intracellular uptake of some selected complexes, by determining their interactions with higher order DNA structures, and by assessing the ability to inhibit thioredoxin reductase. The complexes proved unable to induce the formation of reactive oxygen species. The investigations add to the picture of the possible mode of action of this class of complexes.
Collapse
|
15
|
The electrochemical profiles of Auranofin and Aubipy c, two representative medicinal gold compounds: A comparative study. J Inorg Biochem 2019; 198:110714. [PMID: 31170580 DOI: 10.1016/j.jinorgbio.2019.110714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
A micro-electrochemical reaction cell was coupled to an electrospray mass spectrometer in order to track redox transformations for two representative medicinal gold compounds - i.e. [(2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranosato-S)(triethylphosphine)gold(I)] and [Au(bipydmb-H)(OH)][PF6] (where bipydmb-H is deprotonated 6-(1,1-dimethylbenzyl)-2,2'-bipyridine), known as Auranofin and Aubipyc respectively - in parallel to square wave voltammetry (SWV) measurements. Irreversible oxidation of thio-glucose tetraacetate was the dominant reaction for the gold(I) compound Auranofin; oxidation was accompanied by hydrolysis leading to progressive deacetylation. Two main active forms were identified for this prodrug: the triethylphosphinegold(I) cation and a gold(I) thioglucose species, with a variable number of acetyl groups. For the gold(III) complex Aubipyc irreversible reduction of the gold(III) center was highlighted, accompanied by a ligand exchange process. The free gold(I) ion is proposed to be the final species that subsequently binds transport proteins in the bloodstream. Molecule specific mass spectrometry determinations provide complementary data to square wave voltammetry helping to understand the nature of the electrochemical conversions of complex or unstable compounds. Finally, it was possible to establish that oxidizing conditions during drug preparation and administration should be avoided in the case of Auranofin; conversely, reduction conditions typical for the blood or the cytosol environment are suitable to obtain the active gold(I) species from the gold(III) complex Aubipyc.
Collapse
|
16
|
Karadağ A, Aydin A, Tekin Ş, Akbaş H, Dede S. Pharmacological properties of dicyanidoaurate(I)-based complexes: characterization and single crystal X-ray analysis. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1583333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ahmet Karadağ
- Faculty of Science, Department of Biotechnology, Bartın University, Bartın, Turkey
- Faculty of Art and Science, Department of Chemistry, Gaziosmanpaşa University, Tokat, Turkey
| | - Ali Aydin
- Ministry of Health, Tuzla State Hospital, Central Laboratory, İstanbul, Turkey
| | - Şaban Tekin
- TÜBİTAK MRC Genetic Engineering & Biotechnology Institute, Gebze, Turkey
- Faculty of Medicine, Department of Basic Medical Sciences, Medical Biology, University of Health Sciences, Istanbul, Turkey
| | - Hüseyin Akbaş
- Faculty of Art and Science, Department of Chemistry, Gaziosmanpaşa University, Tokat, Turkey
| | - Süreyya Dede
- Faculty of Art and Science, Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
| |
Collapse
|
17
|
Ostrovskaya LA, Korman DB, Burmiy JP, Kuzmin VA, Bluhterova NV, Fomina MM, Rikova VA, Guliev RR, Abzaeva KA. An Experimental Study of the Pharmacokinetics of the Antitumor Drug Aurumacryl. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918030181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Warżajtis B, Glišić BĐ, Savić ND, Pavic A, Vojnovic S, Veselinović A, Nikodinovic-Runic J, Rychlewska U, Djuran MI. Mononuclear gold(iii) complexes with l-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion. Dalton Trans 2018; 46:2594-2608. [PMID: 28155927 DOI: 10.1039/c6dt04862e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold(iii) complexes with different l-histidine-containing dipeptides, [Au(Gly-l-His-NA,NP,N3)Cl]Cl·3H2O (1a), [Au(Gly-l-His-NA,NP,N3)Cl]NO3·1.25H2O (1b), [Au(l-Ala-l-His-NA,NP,N3)Cl][AuCl4]·H2O (2a), [Au(l-Ala-l-His-NA,NP,N3)Cl]NO3·2.5H2O (2b), [Au(l-Val-l-His-NA,NP,N3)Cl]Cl·2H2O (3), [Au(l-Leu-l-His-NA,NP,N3)Cl]Cl (4a) and [Au(l-Leu-l-His-NA,NP,N3)Cl][AuCl4]·H2O (4b), have been synthesized and structurally characterized by spectroscopic (1H NMR, IR and UV-vis) and single-crystal X-ray diffraction techniques. The antimicrobial efficiency of these gold(iii) complexes, along with K[AuCl4] and the corresponding dipeptides, was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their moderate inhibiting activity. Moreover, the cytotoxic properties of the investigated complexes were assessed against the normal human lung fibroblast cell line (MRC5) and two human cancer, cervix (HeLa) and lung (A549) cell lines. None of the complexes exerted significant cytotoxic activity; nevertheless complexes that did show selectivity in terms of cancer vs. normal cell lines (2a/b and 4a/b) have been evaluated using zebrafish (Danio rerio) embryos for toxicity and antiangiogenic potential. Although the gold(iii) complexes achieved an antiangiogenic effect comparable to the known angiogenic inhibitors auranofin and sunitinib malate at 30-fold higher concentrations, they had no cardiovascular side effects, which commonly accompany auranofin and sunitinib malate treatment. Finally, binding of the gold(iii) complexes to the active sites of both human and bacterial (Escherichia coli) thioredoxin reductases (TrxRs) was demonstrated by conducting a molecular docking study, suggesting that the mechanism of biological action of these complexes can be associated with their interaction with the TrxR active site.
Collapse
Affiliation(s)
- Beata Warżajtis
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań, Poland.
| | - Biljana Đ Glišić
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia.
| | - Nada D Savić
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia.
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia.
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia.
| | | | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia.
| | - Urszula Rychlewska
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań, Poland.
| | - Miloš I Djuran
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
19
|
Bertrand B, Williams MRM, Bochmann M. Gold(III) Complexes for Antitumor Applications: An Overview. Chemistry 2018; 24:11840-11851. [DOI: 10.1002/chem.201800981] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/22/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Benoît Bertrand
- School of ChemistryUniversity of East Anglia Norwich NR4 7TJ United Kingdom
- Sorbonne UniversitésUPMC Univ Paris 06CNRSInstitut Parisien de Chimie Moléculaire (IPCM) 4 Place Jussieu 75005 Paris France
| | | | - Manfred Bochmann
- School of ChemistryUniversity of East Anglia Norwich NR4 7TJ United Kingdom
| |
Collapse
|
20
|
A. Sulaiman AA, Omer KH, Kawde AN, M. Wazeer MI, Altaf M, Musa MM, Ahmad S, Isab AA. Spectroscopic and Electrochemical Studies of the Interaction of Some Gold(III) Complexes with Biologically Relevant Thiones. INT J CHEM KINET 2018. [DOI: 10.1002/kin.21149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Adam A. A. Sulaiman
- Lab Technical Support Office (LTSO); King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Khalid H. Omer
- Department of Chemistry; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Abdel-Nasser Kawde
- Department of Chemistry; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - M. I. M. Wazeer
- Department of Chemistry; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Muhammad Altaf
- Center of Research Excellence in Nanotechnology; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Musa M. Musa
- Department of Chemistry; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Saeed Ahmad
- Department of Chemistry; College of Sciences and Humanities; Prince Sattam bin Abdulaziz University; Al-Kharj 11942 Saudi Arabia
| | - Anvarhusein A. Isab
- Department of Chemistry; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| |
Collapse
|
21
|
Corbo R, Albayer M, Hall NB, Dutton JL. Direct formation of Au(iii) acetyl, alkoxyl and alkynyl functionalities via halide free tricationic Au(iii) precursors. Dalton Trans 2018; 47:4228-4235. [DOI: 10.1039/c7dt04675h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Au(iii) methoxides, acetates and acetylides can be formed in one pot with no need for addition of a base via direct reaction with pyridine ligated Au(iii) trications.
Collapse
Affiliation(s)
- Robert Corbo
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Sciences
- La Trobe University
- Melbourne
- Australia
| | - Mohammad Albayer
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Sciences
- La Trobe University
- Melbourne
- Australia
| | - Neville B. Hall
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Sciences
- La Trobe University
- Melbourne
- Australia
| | - Jason L. Dutton
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Sciences
- La Trobe University
- Melbourne
- Australia
| |
Collapse
|
22
|
Yadav MK, Maurya AK, Rajput G, Manar KK, Vinayak M, Drew MGB, Singh N. Synthesis, characterization, DNA binding and cleavage activity of homoleptic zinc(II) β-oxodithioester chelate complexes. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1377835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Manoj Kumar Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Akhilendra Kumar Maurya
- Biochemistry & Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Gunjan Rajput
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Krishna Kumar Manar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Manjula Vinayak
- Biochemistry & Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | | | - Nanhai Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
23
|
Graziani V, Marrone A, Re N, Coletti C, Platts JA, Casini A. A Multi-Level Theoretical Study to Disclose the Binding Mechanisms of Gold(III)-Bipyridyl Compounds as Selective Aquaglyceroporin Inhibitors. Chemistry 2017; 23:13802-13813. [DOI: 10.1002/chem.201703092] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Valentina Graziani
- Department of Pharmacy; Università “G d'Annunzio” di Chieti-Pescara; Via dei Vestini 31 66100 Chieti Italy
| | - Alessandro Marrone
- Department of Pharmacy; Università “G d'Annunzio” di Chieti-Pescara; Via dei Vestini 31 66100 Chieti Italy
| | - Nazzareno Re
- Department of Pharmacy; Università “G d'Annunzio” di Chieti-Pescara; Via dei Vestini 31 66100 Chieti Italy
| | - Cecilia Coletti
- Department of Pharmacy; Università “G d'Annunzio” di Chieti-Pescara; Via dei Vestini 31 66100 Chieti Italy
| | - James A. Platts
- School of Chemistry; Cardiff University, Park Place; Cardiff CF10 3AT UK
| | - Angela Casini
- School of Chemistry; Cardiff University, Park Place; Cardiff CF10 3AT UK
| |
Collapse
|
24
|
Velásquez AMA, Ribeiro WC, Venn V, Castelli S, Camargo MSD, de Assis RP, de Souza RA, Ribeiro AR, Passalacqua TG, da Rosa JA, Baviera AM, Mauro AE, Desideri A, Almeida-Amaral EE, Graminha MAS. Efficacy of a Binuclear Cyclopalladated Compound Therapy for Cutaneous Leishmaniasis in the Murine Model of Infection with Leishmania amazonensis and Its Inhibitory Effect on Topoisomerase 1B. Antimicrob Agents Chemother 2017; 61:e00688-17. [PMID: 28507113 PMCID: PMC5527659 DOI: 10.1128/aac.00688-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 12/29/2022] Open
Abstract
Leishmaniasis is a disease found throughout the (sub)tropical parts of the world caused by protozoan parasites of the Leishmania genus. Despite the numerous problems associated with existing treatments, pharmaceutical companies continue to neglect the development of better ones. The high toxicity of current drugs combined with emerging resistance makes the discovery of new therapeutic alternatives urgent. We report here the evaluation of a binuclear cyclopalladated complex containing Pd(II) and N,N'-dimethylbenzylamine (Hdmba) against Leishmania amazonensis The compound [Pd(dmba)(μ-N3)]2 (CP2) inhibits promastigote growth (50% inhibitory concentration [IC50] = 13.2 ± 0.7 μM) and decreases the proliferation of intracellular amastigotes in in vitro incubated macrophages (IC50 = 10.2 ± 2.2 μM) without a cytotoxic effect when tested against peritoneal macrophages (50% cytotoxic concentration = 506.0 ± 10.7 μM). In addition, CP2 was also active against T. cruzi intracellular amastigotes (IC50 = 2.3 ± 0.5 μM, selective index = 225), an indication of its potential for use in Chagas disease therapy. In vivo assays using L. amazonensis-infected BALB/c showed an 80% reduction in parasite load compared to infected and nontreated animals. Also, compared to amphotericin B treatment, CP2 did not show any side effects, which was corroborated by the analysis of plasma levels of different hepatic and renal biomarkers. Furthermore, CP2 was able to inhibit Leishmania donovani topoisomerase 1B (Ldtopo1B), a potentially important target in this parasite. (This study has been registered at ClinicalTrials.gov under identifier NCT02169141.).
Collapse
Affiliation(s)
- Angela Maria Arenas Velásquez
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
| | - Willian Campos Ribeiro
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Vutey Venn
- University of Rome, Tor Vergata, Rome, Italy
| | | | | | - Renata Pires de Assis
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | | | | | - Thaís Gaban Passalacqua
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
| | - João Aristeu da Rosa
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Amanda Martins Baviera
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | | | | | | | - Marcia A S Graminha
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| |
Collapse
|
25
|
Wirmer-Bartoschek J, Bendel LE, Jonker HRA, Grün JT, Papi F, Bazzicalupi C, Messori L, Gratteri P, Schwalbe H. Solution NMR Structure of a Ligand/Hybrid-2-G-Quadruplex Complex Reveals Rearrangements that Affect Ligand Binding. Angew Chem Int Ed Engl 2017; 56:7102-7106. [DOI: 10.1002/anie.201702135] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/31/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology; Center of Biomolecular Magnetic Resonance (BMRZ); Goethe University Frankfurt/Main; Max-von-Laue-Strasse 7 60439 Frankfurt Germany
| | - Lars Erik Bendel
- Institute for Organic Chemistry and Chemical Biology; Center of Biomolecular Magnetic Resonance (BMRZ); Goethe University Frankfurt/Main; Max-von-Laue-Strasse 7 60439 Frankfurt Germany
| | - Hendrik R. A. Jonker
- Institute for Organic Chemistry and Chemical Biology; Center of Biomolecular Magnetic Resonance (BMRZ); Goethe University Frankfurt/Main; Max-von-Laue-Strasse 7 60439 Frankfurt Germany
| | - J. Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology; Center of Biomolecular Magnetic Resonance (BMRZ); Goethe University Frankfurt/Main; Max-von-Laue-Strasse 7 60439 Frankfurt Germany
| | - Francesco Papi
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Carla Bazzicalupi
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Luigi Messori
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Paola Gratteri
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco; Salute del Bambino (NEUROFARBA); Università degli Studi di Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino Italy
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology; Center of Biomolecular Magnetic Resonance (BMRZ); Goethe University Frankfurt/Main; Max-von-Laue-Strasse 7 60439 Frankfurt Germany
| |
Collapse
|
26
|
Wirmer-Bartoschek J, Bendel LE, Jonker HRA, Grün JT, Papi F, Bazzicalupi C, Messori L, Gratteri P, Schwalbe H. Solution NMR Structure of a Ligand/Hybrid-2-G-Quadruplex Complex Reveals Rearrangements that Affect Ligand Binding. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology; Center of Biomolecular Magnetic Resonance (BMRZ); Goethe University Frankfurt/Main; Max-von-Laue-Strasse 7 60439 Frankfurt Germany
| | - Lars Erik Bendel
- Institute for Organic Chemistry and Chemical Biology; Center of Biomolecular Magnetic Resonance (BMRZ); Goethe University Frankfurt/Main; Max-von-Laue-Strasse 7 60439 Frankfurt Germany
| | - Hendrik R. A. Jonker
- Institute for Organic Chemistry and Chemical Biology; Center of Biomolecular Magnetic Resonance (BMRZ); Goethe University Frankfurt/Main; Max-von-Laue-Strasse 7 60439 Frankfurt Germany
| | - J. Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology; Center of Biomolecular Magnetic Resonance (BMRZ); Goethe University Frankfurt/Main; Max-von-Laue-Strasse 7 60439 Frankfurt Germany
| | - Francesco Papi
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Carla Bazzicalupi
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Luigi Messori
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Paola Gratteri
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco; Salute del Bambino (NEUROFARBA); Università degli Studi di Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino Italy
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology; Center of Biomolecular Magnetic Resonance (BMRZ); Goethe University Frankfurt/Main; Max-von-Laue-Strasse 7 60439 Frankfurt Germany
| |
Collapse
|
27
|
Đurović MD, Bugarčić ŽD, van Eldik R. Stability and reactivity of gold compounds – From fundamental aspects to applications. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Nunes JHB, Bergamini FR, Lustri WR, de Paiva PP, Ruiz ALT, de Carvalho JE, Corbi PP. Synthesis, characterization and in vitro biological assays of a silver(I) complex with 5-fluorouracil: A strategy to overcome multidrug resistant tumor cells. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2017.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Nardon C, Boscutti G, Gabbiani C, Massai L, Pettenuzzo N, Fassina A, Messori L, Fregona D. Cell and Cell-Free Mechanistic Studies on Two Gold(III) Complexes with Proven Antitumor Properties. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601215] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chiara Nardon
- Dept. Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
| | - Giulia Boscutti
- Dept. Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
| | - Chiara Gabbiani
- Dept. Chemistry and Industrial Chemistry; University of Pisa; Via Moruzzi 13 56124 Pisa Italy
| | - Lara Massai
- Laboratory of Metals in Medicine; Dept. Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino, Florence Italy
| | - Nicolò Pettenuzzo
- Dept. Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
| | - Ambrogio Fassina
- Dept. Medicine; Dept. Chemistry; University of Padova; Via Giustiniani 2 35128 Padova Italy
| | - Luigi Messori
- Laboratory of Metals in Medicine; Dept. Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino, Florence Italy
| | - Dolores Fregona
- Dept. Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
30
|
Topkas E, Cai N, Cumming A, Hazar-Rethinam M, Gannon OM, Burgess M, Saunders NA, Endo-Munoz L. Auranofin is a potent suppressor of osteosarcoma metastasis. Oncotarget 2016; 7:831-44. [PMID: 26573231 PMCID: PMC4808036 DOI: 10.18632/oncotarget.5704] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/16/2015] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OS) accounts for 56% of malignant bone cancers in children and adolescents. Patients with localized disease rarely develop metastasis; however, pulmonary metastasis occurs in approximately 50% of patients and leads to a 5-year survival rate of only 10–20%. Therefore, identifying the genes and pathways involved in metastasis, as new therapeutic targets, is crucial to improve long-term survival of OS patients. Novel markers that define metastatic OS were identified using comparative transcriptomic analyses of two highly metastatic (C1 and C6) and two poorly metastatic clonal variants (C4 and C5) isolated from the metastatic OS cell line, KHOS. Using this approach, we determined that the metastatic phenotype correlated with overexpression of thioredoxin reductase 2 (TXNRD2) or vascular endothelial growth factor (VEGF). Validation in patient biopsies confirmed TXNRD2 and VEGF targets were highly expressed in 29–42% of metastatic OS patient biopsies, with no detectable expression in non-malignant bone or samples from OS patients with localised disease. Auranofin (AF) was used to selectively target and inhibit thioredoxin reductase (TrxR). At low doses, AF was able to inhibit TrxR activity without a significant effect on cell viability whereas at higher doses, AF could induce ROS-dependent apoptosis. AF treatment, in vivo, significantly reduced the development of pulmonary metastasis and we provide evidence that this effect may be due to an AF-dependent increase in cellular ROS. Thus, TXNRD2 may represent a novel druggable target that could be deployed to reduce the development of fatal pulmonary metastases in patients with OS.
Collapse
Affiliation(s)
- Eleni Topkas
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Na Cai
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Andrew Cumming
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Mehlika Hazar-Rethinam
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Orla Margaret Gannon
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Melinda Burgess
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Nicholas Andrew Saunders
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Liliana Endo-Munoz
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Sun RWY, Zhang M, Li D, Li M, Wong AST. Enhanced anti-cancer activities of a gold(III) pyrrolidinedithiocarbamato complex incorporated in a biodegradable metal-organic framework. J Inorg Biochem 2016; 163:1-7. [DOI: 10.1016/j.jinorgbio.2016.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/04/2016] [Accepted: 06/14/2016] [Indexed: 12/18/2022]
|
32
|
He Y, Zhou L. A theoretical study on pyridine gold (III) complexes AuCl 3 (Hpm) and AuCl 2 (pm) targeting purine bases and cysteine. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Maidich L, Cinellu MA, Cocco F, Stoccoro S, Sedda M, Galli S, Zucca A. Platinum(II), palladium(II) and gold(III) adducts and cyclometalated derivatives of 6-methoxy-2,2′-bipyridine: A comparative study. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Organogold(III) compounds as experimental anticancer agents: chemical and biological profiles. Biometals 2016; 29:863-72. [DOI: 10.1007/s10534-016-9957-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/26/2016] [Indexed: 11/25/2022]
|
35
|
Nave M, Castro RE, Rodrigues CM, Casini A, Soveral G, Gaspar MM. Nanoformulations of a potent copper-based aquaporin inhibitor with cytotoxic effect against cancer cells. Nanomedicine (Lond) 2016; 11:1817-30. [PMID: 27388811 DOI: 10.2217/nnm-2016-0086] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM Development of liposomal formulations of Cuphen, a potent copper-based aquaporin inhibitor with therapeutic potential against melanoma and colon cancer. MATERIALS & METHODS Cuphen was incorporated into liposomes using the dehydration-rehydration method. The ability of Cuphen to induce cancer cell death was evaluated by MTS and ViaCount assays. In vivo toxicity studies were performed in BALB/c mice. RESULTS In vitro studies illustrated the antiproliferative effects of Cuphen in different cancer cell lines, in free form or after incorporation into liposomes. In vivo studies revealed no toxic effects after parenteral administration of Cuphen liposomes. CONCLUSIONS Cuphen liposomes are highly attractive to be further tested in murine models due to the possibility of stabilizing and specifically deliver this metallodrug to tumor sites.
Collapse
Affiliation(s)
- Mariana Nave
- Research Institute for Medicines ( iMed.ULisboa ), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rui E Castro
- Research Institute for Medicines ( iMed.ULisboa ), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Cecília Mp Rodrigues
- Research Institute for Medicines ( iMed.ULisboa ), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Angela Casini
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
| | - Graça Soveral
- Research Institute for Medicines ( iMed.ULisboa ), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines ( iMed.ULisboa ), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
36
|
Peng R, Zhang Y, Zhao GX, Li J, Shen XZ, Wang JY, Sun JY. Differential regulation of the expression of aquaporins 3 and 9 by Auphen and dbcAMP in the SMMC-7721 hepatocellular carcinoma cell line. Biotech Histochem 2016; 91:333-41. [PMID: 27058469 DOI: 10.3109/10520295.2016.1168525] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aquaglycero-aquaporins (agAQPs) are the structural foundation of rapid water transport and they appear to participate in cancer proliferation and malignancy. AQP3 expression is increased and AQP9 expression is decreased in hepatocellular carcinoma (HCC) compared to normal liver, which suggests their possible use as targets for cancer treatment. AQP-based modifiers, such as Auphen and dibutyryladenosine 3', 5'-cyclic monophosphate (dbcAMP), might be used to treat several diseases and as chemical tools for assessing the functions of AQPs in biological systems. We investigated the effects of both Auphen on AQP3 and dbcAMP on AQP9 in SMMC-7721 cells. We used western blotting, real-time quantitative polymerase chain reaction (qPCR) and immunohistochemistry to evaluate changes in AQP3 and AQP9 expression in SMMC-7721 cells after culturing with Auphen and dbcAMP, respectively. We also determined the proliferation of SMMC-7721 cells. We found that compared to HL-7702 (L02) liver cells, Auphen increased AQP3 expression in tumor cells, whereas dbcAMP decreased expression of AQP9 in these cells. Also, high concentrations of Auphen and dbcAMP inhibited proliferation of SMMC-7721 cells in vitro. Auphen and dbcAMP may inhibit HCC development and could be considered targets for HCC diagnosis and therapy.
Collapse
Affiliation(s)
- R Peng
- a Department of Gastroenterology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - Y Zhang
- a Department of Gastroenterology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - G X Zhao
- a Department of Gastroenterology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - J Li
- a Department of Gastroenterology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - X Z Shen
- a Department of Gastroenterology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - J Y Wang
- a Department of Gastroenterology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - J Y Sun
- a Department of Gastroenterology , Zhongshan Hospital, Fudan University , Shanghai , China
| |
Collapse
|
37
|
Peng R, Zhao GX, Li J, Zhang Y, Shen XZ, Wang JY, Sun JY. Auphen and dibutyryl cAMP suppress growth of hepatocellular carcinoma by regulating expression of aquaporins 3 and 9 in vivo. World J Gastroenterol 2016; 22:3341-3354. [PMID: 27022216 PMCID: PMC4806192 DOI: 10.3748/wjg.v22.i12.3341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/08/2016] [Accepted: 01/30/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether the regulation of aquaporin 3 (AQP3) and AQP9 induced by Auphen and dibutyryl cAMP (dbcAMP) inhibits hepatic tumorigenesis.
METHODS: Expression of AQP3 and AQP9 was detected by Western blot, immunohistochemistry (IHC), and RT-PCR in HCC samples and paired non-cancerous liver tissue samples from 30 hepatocellular carcinoma (HCC) patients. A xenograft tumor model was used in vivo. Nine nude mice were divided into control, Auphen-treated, and dbcAMP-treated groups (n = 3 for each group). AQP3 and AQP9 protein expression after induction of xenograft tumors was detected by IHC and mRNA by RT-PCR analysis. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay and histological evaluation were used to detect apoptosis of tumor cells, and the concentration of serum α-fetoprotein (AFP) was measured using RT-PCR and an ELISA kit.
RESULTS: The volumes and weights of tumors decreased significantly in the Auphen- and dbcAMP-treated mice compared with the control mice (P < 0.01). The levels of AQP3 were significantly lower in the Auphen treatment group, and levels of AQP9 were significantly higher in thedbcAMP treatment mice than in the control mice (P < 0.01). The reduction of AQP3 by Auphen and increase of AQP9 by dbcAMP in nude mice suppressed tumor growth of HCC, which resulted in reduced AFP levels in serum and tissues, and apoptosis of tumor cells in the Auphen- and dbcAMP-treated mice, when compared with control mice (P < 0.01). Compared with para-carcinoma tissues, AQP3 expression increased in tumor tissues whereas the expression of AQP9 decreased. By correlating clinicopathological and expression levels, we demonstrated that the expression of AQP3 and AQP9 was correlated with clinical progression of HCC and disease outcomes.
CONCLUSION: AQP3 increases in HCC while AQP9 decreases. Regulation of AQP3 and AQP9 expression by Auphen and dbcAMP inhibits the development and growth of HCC.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Aquaporin 3/genetics
- Aquaporin 3/metabolism
- Aquaporins/genetics
- Aquaporins/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cyclic CMP/analogs & derivatives
- Cyclic CMP/pharmacology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Organogold Compounds/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
- alpha-Fetoproteins/metabolism
Collapse
|
38
|
Corbo R, Ryan GF, Haghighatbin MA, Hogan CF, Wilson DJD, Hulett MD, Barnard PJ, Dutton JL. Access to the Parent Tetrakis(pyridine)gold(III) Trication, Facile Formation of Rare Au(III) Terminal Hydroxides, and Preliminary Studies of Biological Properties. Inorg Chem 2016; 55:2830-9. [PMID: 26930516 DOI: 10.1021/acs.inorgchem.5b02667] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this paper we report on the use of [NO][BF4] to access tricationic tetrakis(pyridine)gold(III) from Au powder, a species inaccessible using the more traditional (tetrahydrothiophene)AuCl route. It is then demonstrated that this family of compounds can be used to access new terminal Au(III) hydroxides, a challenging class of compounds, and the first crystallographically characterized examples employing bidentate ligands. Finally, preliminary biological studies indicate good activity for derivatives featuring polydentate ligands against the HeLa and PC3 cell lines but also strong inhibition of primary HUVEC cells.
Collapse
Affiliation(s)
- Robert Corbo
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Gemma F Ryan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Mohammad A Haghighatbin
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Conor F Hogan
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Peter J Barnard
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Jason L Dutton
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| |
Collapse
|
39
|
Gamberi T, Magherini F, Fiaschi T, Landini I, Massai L, Valocchia E, Bianchi L, Bini L, Gabbiani C, Nobili S, Mini E, Messori L, Modesti A. Proteomic analysis of the cytotoxic effects induced by the organogold(III) complex Aubipyc in cisplatin-resistant A2780 ovarian cancer cells: further evidence for the glycolytic pathway implication. MOLECULAR BIOSYSTEMS 2016; 11:1653-67. [PMID: 25906354 DOI: 10.1039/c5mb00008d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cellular alterations produced in cisplatin-resistant A2780 ovarian cancer cells (A2780/R) upon treatment with the cytotoxic organogold(III) complex Aubipyc were investigated in depth through a classical proteomic approach. We observed that A2780/R cell exposure to a cytotoxic concentration of Aubipyc for 24 hours results in a conspicuous number of alterations at the protein level that were carefully examined. Notably, we observed that several affected proteins belong to the glucose metabolism system further supporting the idea that the cytotoxic effects of Aubipyc in A2780/R cells are mostly mediated by an impairment of glucose metabolism in excellent agreement with previous observations on the parent cisplatin-sensitive cell line.
Collapse
Affiliation(s)
- Tania Gamberi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Montanel-Pérez S, Herrera RP, Laguna A, Villacampa MD, Gimeno MC. The fluxional amine gold(III) complex as an excellent catalyst and precursor of biologically active acyclic carbenes. Dalton Trans 2016; 44:9052-62. [PMID: 25893402 DOI: 10.1039/c5dt00703h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A new amine gold(III) complex [Au(C6F5)2(DPA)]ClO4 with the di-(2-picolyl)amine (DPA) ligand has been synthesised. In the solid state the complex has a chiral amine nitrogen because the ligand coordinates to the gold centre through one nitrogen atom from a pyridine and through the NH moiety, whereas in solution it shows a fluxional behaviour with a rapid exchange between the pyridine sites. This complex can be used as an excellent synton to prepare new gold(III) carbene complexes by the reaction with isocyanide CNR. The resulting gold(III) derivatives have unprecedented bidentate C^N acyclic carbene ligands. All the complexes have been spectroscopically and structurally characterized. Taking advantage of the fluxional behaviour of the amine complex, its catalytic properties have been tested in several reactions with the formation of C-C and C-N bonds. The complex showed excellent activity with total conversion, without the presence of a co-catalyst, and with a catalyst loading as low as 0.1%. These complexes also present biological properties, and cytotoxicity studies have been performed in vitro against three tumour human cell lines, Jurkat (T-cell leukaemia), MiaPaca2 (pancreatic carcinoma) and A549 (lung carcinoma). Some of them showed excellent cytotoxic activity compared with the reference cisplatin.
Collapse
Affiliation(s)
- Sara Montanel-Pérez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain.
| | | | | | | | | |
Collapse
|
41
|
Citta A, Scalcon V, Göbel P, Bertrand B, Wenzel M, Folda A, Rigobello MP, Meggers E, Casini A. Toward anticancer gold-based compounds targeting PARP-1: a new case study. RSC Adv 2016. [DOI: 10.1039/c6ra11606j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new gold(iii) complex bearing a 2-((2,2′-bipyridin)-5-yl)-1H-benzimidazol-4-carboxamide ligand has been synthesized and characterized for its biological properties in vitro.
Collapse
Affiliation(s)
- A. Citta
- Department of Biomedical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - V. Scalcon
- Department of Biomedical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - P. Göbel
- Fachbereich Chemie
- Philipps-Universität Marburg
- 35043 Marburg
- Germany
| | - B. Bertrand
- Dept. of Pharmacokinetics
- Toxicology and Targeting
- Research Institute of Pharmacy
- University of Groningen
- 9713 AV Groningen
| | - M. Wenzel
- School of Chemistry
- Cardiff University
- Cardiff CF10 3A
- UK
| | - A. Folda
- Department of Biomedical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - M. P. Rigobello
- Department of Biomedical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - E. Meggers
- Fachbereich Chemie
- Philipps-Universität Marburg
- 35043 Marburg
- Germany
| | - A. Casini
- Dept. of Pharmacokinetics
- Toxicology and Targeting
- Research Institute of Pharmacy
- University of Groningen
- 9713 AV Groningen
| |
Collapse
|
42
|
Altaf M, Ahmad S, Kawde AN, Baig N, Alawad A, Altuwaijri S, Stoeckli-Evans H, Isab AA. Synthesis, structural characterization, electrochemical behavior and anticancer activity of gold(iii) complexes of meso-1,2-di(1-naphthyl)-1,2-diaminoethane and tetraphenylporphyrin. NEW J CHEM 2016. [DOI: 10.1039/c6nj00692b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold(iii) complexes were tested for in vitro antiproliferative activity against three human tumor cell lines. All complexes exhibited remarkable cytotoxicity.
Collapse
Affiliation(s)
- Muhammad Altaf
- Center of Excellence in Nanotechnology (CENT)
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Saeed Ahmad
- Department of Chemistry
- College of Sciences and Humanities
- Prince Sattam bin Abdulaziz University
- Al-Kharj 11942
- Saudi Arabia
| | - Abdel-Nasser Kawde
- Department of Chemistry
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Nadeem Baig
- Department of Chemistry
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Abdullah Alawad
- National Center for Stem Cell Technology (NCSCT)
- Life Sciences and Environmental Research Institute
- King Abdulaziz City for Science and Technology (KACST)
- Riyadh 11442
- Saudi Arabia
| | - Saleh Altuwaijri
- Clinical Research Laboratory
- SAAD Research Development Center
- SAAD Specialist Hospital
- Al-Khobar 31952
- Saudi Arabia
| | | | - Anvarhusein A. Isab
- Department of Chemistry
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| |
Collapse
|
43
|
Hu D, Liu Y, Lai YT, Tong KC, Fung YM, Lok CN, Che CM. Anticancer Gold(III) Porphyrins Target Mitochondrial Chaperone Hsp60. Angew Chem Int Ed Engl 2015; 55:1387-91. [DOI: 10.1002/anie.201509612] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Di Hu
- State Key Laboratory of Synthetic Chemistry, Chemical Biology Center, and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong Hong Kong
| | - Yungen Liu
- State Key Laboratory of Synthetic Chemistry, Chemical Biology Center, and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong Hong Kong
| | - Yau-Tsz Lai
- State Key Laboratory of Synthetic Chemistry, Chemical Biology Center, and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong Hong Kong
| | - Ka-Chung Tong
- State Key Laboratory of Synthetic Chemistry, Chemical Biology Center, and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong Hong Kong
| | - Yi-Man Fung
- State Key Laboratory of Synthetic Chemistry, Chemical Biology Center, and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong Hong Kong
| | - Chun-Nam Lok
- State Key Laboratory of Synthetic Chemistry, Chemical Biology Center, and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong Hong Kong
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Chemical Biology Center, and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong Hong Kong
| |
Collapse
|
44
|
Hu D, Liu Y, Lai YT, Tong KC, Fung YM, Lok CN, Che CM. Anticancer Gold(III) Porphyrins Target Mitochondrial Chaperone Hsp60. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509612] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Di Hu
- State Key Laboratory of Synthetic Chemistry, Chemical Biology Center, and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong Hong Kong
| | - Yungen Liu
- State Key Laboratory of Synthetic Chemistry, Chemical Biology Center, and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong Hong Kong
| | - Yau-Tsz Lai
- State Key Laboratory of Synthetic Chemistry, Chemical Biology Center, and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong Hong Kong
| | - Ka-Chung Tong
- State Key Laboratory of Synthetic Chemistry, Chemical Biology Center, and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong Hong Kong
| | - Yi-Man Fung
- State Key Laboratory of Synthetic Chemistry, Chemical Biology Center, and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong Hong Kong
| | - Chun-Nam Lok
- State Key Laboratory of Synthetic Chemistry, Chemical Biology Center, and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong Hong Kong
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Chemical Biology Center, and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong Hong Kong
| |
Collapse
|
45
|
Synthesis, characterization and anticancer activity of gold(III) complexes with (1R,2R)-(−)-1,2-diaminocyclohexane. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Fernández-Gallardo J, Elie BT, Sadhukha T, Prabha S, Sanaú M, Rotenberg SA, Ramos JW, Contel M. Heterometallic titanium-gold complexes inhibit renal cancer cells in vitro and in vivo. Chem Sci 2015; 6:5269-5283. [PMID: 27213034 PMCID: PMC4869729 DOI: 10.1039/c5sc01753j] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/23/2015] [Indexed: 12/23/2022] Open
Abstract
Following recent work on heterometallic titanocene-gold complexes as potential chemotherapeutics for renal cancer, we report here on the synthesis, characterization and stability studies of new titanocene complexes containing a methyl group and a carboxylate ligand (mba = S-C6H4-COO-) bound to gold(I)-phosphane fragments through a thiolate group ([(η-C5H5)2TiMe(μ-mba)Au(PR3)]. The compounds are more stable in physiological media than those previously reported and are highly cytotoxic against human cancer renal cell lines. We describe here preliminary mechanistic data involving studies on the interaction of selected compounds with plasmid (pBR322) DNA used as a model nucleic acid, and with selected protein kinases from a panel of 35 protein kinases having oncological interest. Preliminary mechanistic studies in Caki-1 renal cells indicate that the cytotoxic and anti-migration effects of the most active compound 5 ([(η-C5H5)2TiMe(μ-mba)Au(PPh3)] involve inhibition of thioredoxin reductase and loss of expression of protein kinases that drive cell migration (AKT, p90-RSK, and MAPKAPK3). The co-localization of both titanium and gold metals (1:1 ratio) in Caki-1 renal cells was demonstrated for 5 indicating the robustness of the heterometallic compound in vitro. Two compounds were selected for further in vivo studies on mice based on their selectivity in vitro against renal cancer cell lines when compared to non-tumorigenic human kidney cell lines (HEK-293T and RPTC) and the favourable preliminary toxicity profile in C57BL/6 mice. Evaluation of Caki-1 xenografts in NOD.CB17-Prkdc SCID/J mice showed an impressive tumor reduction (67%) after treatment for 28 days (3 mg/kg/every other day) with heterometallic compound 5 as compared with the previously described [(η-C5H5)2Ti{OC(O)-4-C6H4-P(Ph2)AuCI}2] 3 which was non-inhibitory. These findings indicate that structural modifications on the ligand scaffold affect the in vivo efficacy of this class of compounds.
Collapse
Affiliation(s)
- Jacob Fernández-Gallardo
- Department of Chemistry , Brooklyn College and The Graduate Center , The City University of New York , Brooklyn , NY 11210 , USA .
| | - Benelita T. Elie
- Department of Chemistry , Brooklyn College and The Graduate Center , The City University of New York , Brooklyn , NY 11210 , USA .
- Biology PhD Program , The Graduate Center , The City University of New York , 365 Fifth Avenue , New York , NY 10016 , USA
| | - Tanmoy Sadhukha
- Department of Pharmaceutics , College of Pharmacy , University of Minnesota , MN 55455 , USA
| | - Swayam Prabha
- Department of Pharmaceutics , College of Pharmacy , University of Minnesota , MN 55455 , USA
- Center for Translational Drug Delivery , University of Minnesota , MN 55455 , USA
| | - Mercedes Sanaú
- Departamento de Química Inorgánica , Universidad de Valencia , Burjassot , Valencia , 46100 , Spain
| | - Susan A. Rotenberg
- Biology PhD Program , The Graduate Center , The City University of New York , 365 Fifth Avenue , New York , NY 10016 , USA
- Department of Chemistry and Biochemistry , Queens College , The City University of New York , Flushing , NY 11367 , USA
| | - Joe W. Ramos
- Cancer Biology Program , University of Hawaii Cancer Center , University of Hawaii at Manoa , Honolulu , HI 96813 , USA
| | - María Contel
- Department of Chemistry , Brooklyn College and The Graduate Center , The City University of New York , Brooklyn , NY 11210 , USA .
- Biology PhD Program , The Graduate Center , The City University of New York , 365 Fifth Avenue , New York , NY 10016 , USA
- Cancer Biology Program , University of Hawaii Cancer Center , University of Hawaii at Manoa , Honolulu , HI 96813 , USA
| |
Collapse
|
47
|
Frik M, Fernández-Gallardo J, Gonzalo O, Mangas-Sanjuan V, González-Alvarez M, Serrano del Valle A, Hu C, González-Alvarez I, Bermejo M, Marzo I, Contel M. Cyclometalated Iminophosphorane Gold(III) and Platinum(II) Complexes. A Highly Permeable Cationic Platinum(II) Compound with Promising Anticancer Properties. J Med Chem 2015; 58:5825-41. [PMID: 26147404 PMCID: PMC4538566 DOI: 10.1021/acs.jmedchem.5b00427] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
New
organometallic gold(III) and platinum(II) complexes containing
iminophosphorane ligands are described. Most of them are more cytotoxic
to a number of human cancer cell lines than cisplatin. Cationic Pt(II)
derivatives 4 and 5, which differ only in
the anion, Hg2Cl62– or PF6– respectively, display almost identical
IC50 values in the sub-micromolar range (25–335-fold
more active than cisplatin on these cell lines). The gold compounds
induced mainly caspase-independent cell death, as previously reported
for related cycloaurated compounds containing IM ligands. Cycloplatinated
compounds 3, 4, and 5 can also
activate alternative caspase-independent mechanisms of death. However,
at short incubation times cell death seems to be mainly caspase dependent,
suggesting that the main mechanism of cell death for these compounds
is apoptosis. Mercury-free compound 5 does not interact
with plasmid (pBR322) DNA or with calf thymus DNA. Permeability studies
of 5 by two different assays, in vitro Caco-2 monolayers and a rat perfusion model, have revealed a high
permeability profile for this compound (comparable to that of metoprolol
or caffeine) and an estimated oral fraction absorbed of 100%, which
potentially makes it a good candidate for oral administration.
Collapse
Affiliation(s)
- Malgorzata Frik
- †Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States.,‡Chemistry Ph.D. Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Jacob Fernández-Gallardo
- †Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
| | - Oscar Gonzalo
- §Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Víctor Mangas-Sanjuan
- ∥Departamento de Ingeniería, Área Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernández, 03550 San Juan, Alicante, Spain
| | - Marta González-Alvarez
- ∥Departamento de Ingeniería, Área Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernández, 03550 San Juan, Alicante, Spain
| | - Alfonso Serrano del Valle
- §Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Chunhua Hu
- ⊥Chemistry Department, New York University, New York, New York 10003, United States
| | - Isabel González-Alvarez
- ∥Departamento de Ingeniería, Área Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernández, 03550 San Juan, Alicante, Spain
| | - Marival Bermejo
- ∥Departamento de Ingeniería, Área Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernández, 03550 San Juan, Alicante, Spain
| | - Isabel Marzo
- §Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - María Contel
- †Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States.,‡Chemistry Ph.D. Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States.,#Biology Ph.D. Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
48
|
Tan YS, Ooi KK, Ang KP, Akim AM, Cheah YK, Halim SNA, Seng HL, Tiekink ERT. Molecular mechanisms of apoptosis and cell selectivity of zinc dithiocarbamates functionalized with hydroxyethyl substituents. J Inorg Biochem 2015; 150:48-62. [PMID: 26086852 DOI: 10.1016/j.jinorgbio.2015.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
Abstract
In the solid state each of three binuclear zinc dithiocarbamates bearing hydroxyethyl groups, {Zn[S2CN(R)CH2CH2OH]2}2 for R = iPr (1), CH2CH2OH (2), and Me (3), and an all alkyl species, [Zn(S2CNEt2)2]2 (4), features a centrosymmetric {ZnSCS}2 core with a step topology; both 1 and 3 were isolated as monohydrates. All compounds were broadly cytotoxic, specifically against human cancer cell lines compared with normal cells, with greater potency than cisplatin. Notably, some selectivity were indicated with 2 being the most potent against human ovarian carcinoma cells (cisA2780), and 4 being more cytotoxic toward multidrug resistant human breast carcinoma cells (MCF-7R), human colon adenocarcinoma cells (HT-29), and human lung adenocarcinoma epithelial cells (A549). Based on human apoptosis PCR-array analysis, caspase activities, DNA fragmentation, cell apoptotic assays, intracellular reactive oxygen species (ROS) measurements and human topoisomerase I inhibition, induction of apoptosis in HT-29 cells is demonstrated via both extrinsic and intrinsic pathways. Compounds 2-4 activate the p53 gene while 1 activates both p53 and p73. Cell cycle arrest at the S and G2/M phases correlates with inhibition of HT-29 cell growth. Cell invasion is also inhibited by 1-4 which is correlated with down-regulation of NF-κB.
Collapse
Affiliation(s)
- Yee Seng Tan
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kah Kooi Ooi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Kok Pian Ang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Abdah Md Akim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Yoke-Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | | | - Hoi-Ling Seng
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biological Sciences, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Edward R T Tiekink
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
49
|
Liao J, Zhou L. Insights into the mechanism of binding of the gold(III) dithiocarbamate derivatives to cysteine or DNA purine bases. Struct Chem 2015. [DOI: 10.1007/s11224-015-0600-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Nardon C, Chiara F, Brustolin L, Gambalunga A, Ciscato F, Rasola A, Trevisan A, Fregona D. Gold(III)-pyrrolidinedithiocarbamato Derivatives as Antineoplastic Agents. ChemistryOpen 2015; 4:183-91. [PMID: 25969817 PMCID: PMC4420591 DOI: 10.1002/open.201402091] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 12/18/2022] Open
Abstract
Transition metals offer many possibilities in developing potent chemotherapeutic agents. They are endowed with a variety of oxidation states, allowing for the selection of their coordination numbers and geometries via the choice of proper ligands, leading to the tuning of their final biological properties. We report here on the synthesis, physico-chemical characterization, and solution behavior of two gold(III) pyrrolidinedithiocarbamates (PDT), namely [AuIIIBr2(PDT)] and [AuIIICl2(PDT)]. We found that the bromide derivative was more effective than the chloride one in inducing cell death for several cancer cell lines. [AuIIIBr2(PDT)] elicited oxidative stress with effects on the permeability transition pore, a mitochondrial channel whose opening leads to cell death. More efficient antineoplastic strategies are required for the widespread burden that is cancer. In line with this, our results indicate that [AuIIIBr2(PDT)] is a promising antineoplastic agent that targets cellular components with crucial functions for the survival of tumor cells.
Collapse
Affiliation(s)
- Chiara Nardon
- Department of Chemical Sciences, University of Padova Via F. Marzolo 1, 35131, Padova, Italy
| | - Federica Chiara
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova Via Giustiniani 2, 35128, Padova, Italy
| | - Leonardo Brustolin
- Department of Chemical Sciences, University of Padova Via F. Marzolo 1, 35131, Padova, Italy
| | - Alberto Gambalunga
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova Via Giustiniani 2, 35128, Padova, Italy
| | - Francesco Ciscato
- Department of Biomedical Sciences, University of Padova Viale G. Colombo 3, 35131, Padova, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova Viale G. Colombo 3, 35131, Padova, Italy
| | - Andrea Trevisan
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova Via Giustiniani 2, 35128, Padova, Italy
| | - Dolores Fregona
- Department of Chemical Sciences, University of Padova Via F. Marzolo 1, 35131, Padova, Italy
| |
Collapse
|