1
|
Oh E, Jung WW, Sul D. DNA damage and protective effects of placental extracts in blood lymphocytes and lymphoid organs of mice exposed to gamma irradiation. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2023.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
2
|
Liang Y, Wang H, Wu B, Peng N, Yu D, Wu X, Zhong X. The emerging role of N 6-methyladenine RNA methylation in metal ion metabolism and metal-induced carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121897. [PMID: 37244530 DOI: 10.1016/j.envpol.2023.121897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
N6-methyladenine (m6A) is the most common and abundant internal modification in eukaryotic mRNAs, which can regulate gene expression and perform important biological tasks. Metal ions participate in nucleotide biosynthesis and repair, signal transduction, energy generation, immune defense, and other important metabolic processes. However, long-term environmental and occupational exposure to metals through food, air, soil, water, and industry can result in toxicity, serious health problems, and cancer. Recent evidence indicates dynamic and reversible m6A modification modulates various metal ion metabolism, such as iron absorption, calcium uptake and transport. In turn, environmental heavy metal can alter m6A modification by directly affecting catalytic activity and expression level of methyltransferases and demethylases, or through reactive oxygen species, eventually disrupting normal biological function and leading to diseases. Therefore, m6A RNA methylation may play a bridging role in heavy metal pollution-induced carcinogenesis. This review discusses interaction among heavy metal, m6A, and metal ions metabolism, and their regulatory mechanism, focuses on the role of m6A methylation and heavy metal pollution in cancer. Finally, the role of nutritional therapy that targeting m6A methylation to prevent metal ion metabolism disorder-induced cancer is summarized.
Collapse
Affiliation(s)
- Yaxu Liang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Huan Wang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Bencheng Wu
- Anyou Biotechnology Group Co., LTD., Taicang, 215437, China
| | - Ning Peng
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Dongming Yu
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiang Zhong
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
3
|
Hagedorn PH, Brown JM, Easton A, Pierdomenico M, Jones K, Olson RE, Mercer SE, Li D, Loy J, Høg AM, Jensen ML, Gill M, Cacace AM. Acute Neurotoxicity of Antisense Oligonucleotides After Intracerebroventricular Injection Into Mouse Brain Can Be Predicted from Sequence Features. Nucleic Acid Ther 2022; 32:151-162. [PMID: 35166597 PMCID: PMC9221153 DOI: 10.1089/nat.2021.0071] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antisense oligonucleotides are a relatively new therapeutic modality and safety evaluation is still a developing area of research. We have observed that some oligonucleotides can produce acute, nonhybridization dependent, neurobehavioral side effects after intracerebroventricular (ICV) dosing in mice. In this study, we use a combination of in vitro, in vivo, and bioinformatics approaches to identify a sequence design algorithm, which can reduce the number of acutely toxic molecules synthesized and tested in mice. We find a cellular assay measuring spontaneous calcium oscillations in neuronal cells can predict the behavioral side effects after ICV dosing, and may provide a mechanistic explanation for these observations. We identify sequence features that are overrepresented or underrepresented among oligonucleotides causing these reductions in calcium oscillations. A weighted linear combination of the five most informative sequence features predicts the outcome of ICV dosing with >80% accuracy. From this, we develop a bioinformatics tool that allows oligonucleotide designs with acceptable acute neurotoxic potential to be identified, thereby reducing the number of toxic molecules entering drug discovery pipelines. The informative sequence features we identified also suggest areas in which to focus future medicinal chemistry efforts.
Collapse
Affiliation(s)
- Peter H Hagedorn
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Jeffrey M Brown
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Amy Easton
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Maria Pierdomenico
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Kelli Jones
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Richard E Olson
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Stephen E Mercer
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Dong Li
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - James Loy
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Anja M Høg
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Marianne L Jensen
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Martin Gill
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Angela M Cacace
- Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| |
Collapse
|
4
|
Azran S, Danino O, Förster D, Kenigsberg S, Reiser G, Dixit M, Singh V, Major DT, Fischer B. Identification of Highly Promising Antioxidants/Neuroprotectants Based on Nucleoside 5'-Phosphorothioate Scaffold. Synthesis, Activity, and Mechanisms of Action. J Med Chem 2015; 58:8427-43. [PMID: 26447940 DOI: 10.1021/acs.jmedchem.5b00575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With a view to identify novel and biocompatible neuroprotectants, we designed nucleoside 5'-thiophosphate analogues, 6-11. We identified 2-SMe-ADP(α-S), 7A, as a most promising neuroprotectant. 7A reduced ROS production in PC12 cells under oxidizing conditions, IC50 of 0.08 vs 21 μM for ADP. Furthermore, 7A rescued primary neurons subjected to oxidation, EC50 of 0.04 vs 19 μM for ADP. 7A is a most potent P2Y1-R agonist, EC50 of 0.0026 μM. Activity of 7A in cells involved P2Y1/12-R as indicated by blocking P2Y12-R or P2Y1-R. Compound 7A inhibited Fenton reaction better than EDTA, IC50 of 37 vs 54 μM, due to radical scavenging, IC50 of 12.5 vs 30 μM for ADP, and Fe(II)-chelation, IC50 of 80 vs >200 μM for ADP (ferrozine assay). In addition, 7A was stable in human blood serum, t1/2 of 15 vs 1.5 h for ADP, and resisted hydrolysis by NPP1/3, 2-fold vs ADP. Hence, we propose 7A as a highly promising neuroprotectant.
Collapse
Affiliation(s)
- Sagit Azran
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University , Ramat-Gan 52900, Israel
| | - Ortal Danino
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University , Ramat-Gan 52900, Israel
| | - Daniel Förster
- Otto von Guericke University , Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Sarah Kenigsberg
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University , Ramat-Gan 52900, Israel
| | - Georg Reiser
- Otto von Guericke University , Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Mudit Dixit
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University , Ramat-Gan 52900, Israel
| | - Vijay Singh
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University , Ramat-Gan 52900, Israel
| | - Dan T Major
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University , Ramat-Gan 52900, Israel
| | - Bilha Fischer
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University , Ramat-Gan 52900, Israel
| |
Collapse
|
5
|
Danino O, Grossman S, Fischer B. Nucleoside 5'-phosphorothioate derivatives as oxidative stress protectants in PC12 cells. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2013; 32:333-53. [PMID: 23742060 DOI: 10.1080/15257770.2013.789107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Iron-induced oxidative damage of mitochondria contributes to cellular death seen in neurodegenerative diseases, therefore, there is a demand for nontoxic, biocompatible, and effective Fe-ion chelators. We evaluated the chelation of Fe(II) by phosphate derivatives using ferrozine as an indicator. We studied the effect of phosphate derivatives on inhibiting Fe(II)-induced oxidative stress in PC12 cells, and metabolic stability in PC12 cells was evaluated. Nucleotides containing phosphorothioate moieties inhibited ROS formation better than natural nucleotides and were more metabolically stable in PC12 cells. Finally, we elucidated that these nucleotides activate the MAP-kinase pathway that contributes to protection of PC12 cells under oxidative stress.
Collapse
Affiliation(s)
- Ortal Danino
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | | | | |
Collapse
|
6
|
Bibliography. Neonatology and perinatology. Current world literature. Curr Opin Pediatr 2011; 23:253-7. [PMID: 21412083 DOI: 10.1097/mop.0b013e3283454167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Golan O, Issan Y, Isak A, Leipziger J, Robaye B, Shainberg A. Extracellular nucleotide derivatives protect cardiomyocytes against hypoxic stress. Biochem Pharmacol 2011; 81:1219-27. [PMID: 21376706 DOI: 10.1016/j.bcp.2011.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 01/26/2011] [Accepted: 02/15/2011] [Indexed: 11/28/2022]
Abstract
RATIONALE Extracellular nucleotides have widespread effects and various cell responses. Whereas the effect of a purine nucleotide (ATP) and a pyrimidine nucleotide (UTP) on myocardial infarction has been examined, the role of different purine and pyrimidine nucleotides and nucleosides in cardioprotection against hypoxic stress has not been reported. OBJECTIVE To investigate the role of purine and pyrimidine nucleotides and nucleosides in protective effects in cardiomyocytes subjected to hypoxia. METHODS AND RESULTS Rat cultured cardiomyocytes were treated with various extracellular nucleotides and nucleosides, before or during hypoxic stress. The results revealed that GTP or CTP exhibit cardioprotective ability, as revealed by lactate dehydrogenase (LDH) release, by propidium iodide (PI) staining, by cell morphology, and by preserved mitochondrial activity. Pretreatment with various P2 antagonists (suramin, RB-2, or PPADS) did not abolish the cardioprotective effect of the nucleotides. Moreover, P2Y₂ -/- , P2Y₄ -/-, and P2Y₂ -/-/P2Y₄ -/- receptor knockouts mouse cardiomyocytes were significantly protected against hypoxic stress when treated with UTP. These results indicate that the protective effect is not mediated via those receptors. We found that a wide variety of triphosphate and diphosphate nucleotides (TTP, ITP, deoxyGTP, and GDP), provided significant cardioprotective effect. GMP, guanosine, and ribose phosphate provided no cardioprotective effect. Moreover, we observed that tri/di-phosphate alone assures cardioprotection. Treatment with extracellular nucleotides, or with tri/di-phosphate, administered under normoxic conditions or during hypoxic conditions, led to a decrease in reactive oxygen species production. CONCLUSIONS Extracellular tri/di-phosphates are apparently the molecule responsible for cardioprotection against hypoxic damage, probably by preventing free radicals formation.
Collapse
Affiliation(s)
- O Golan
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | |
Collapse
|
8
|
Suntharalingam K, Vilar R. Interaction of metal complexes with nucleic acids. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1ic90027g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|