1
|
Ali S, Lombardi EP, Ghosh D, Jia T, Vitry G, Saker L, Poupon J, Teulade-Fichou MP, Nicolas A, Londono-Vallejo A, Bombard S. Pt-ttpy, a G-quadruplex binding platinum complex, induces telomere dysfunction and G-rich regions DNA damage. Metallomics 2021; 13:6280987. [PMID: 34021581 DOI: 10.1093/mtomcs/mfab029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/14/2022]
Abstract
Pt-ttpy (tolyl terpyridin-Pt complex) covalently binds to G-quadruplex (G4) structures in vitro and to telomeres in cellulo via its Pt moiety. Here, we identified its targets in the human genome, in comparison to Pt-tpy, its derivative without G4 affinity, and cisplatin. Pt-ttpy, but not Pt-tpy, induces the release of the shelterin protein TRF2 from telomeres concomitantly to the formation of DNA damage foci at telomeres but also at other chromosomal locations. γ-H2AX chromatin immunoprecipitation (ChIP-seq) after treatment with Pt-ttpy or cisplatin revealed accumulation in G- and A-rich tandemly repeated sequences, but not particularly in potential G4 forming sequences. Collectively, Pt-ttpy presents dual targeting efficiency on DNA, by inducing telomere dysfunction and genomic DNA damage at specific loci.
Collapse
Affiliation(s)
- Samar Ali
- INSERM UMRS 1007, Université de Paris, 75006 Paris, France
| | - Emilia Puig Lombardi
- Institut Curie, PSL Research University, CNRS UMR3244, Sorbonne Université, Telomeres and Cancer lab, 75005 Paris, France
| | - Deepanjan Ghosh
- Institut Curie, CNRS UMR9187-INSERMU1196, CMBC, 91405 Orsay, France.,Institut Curie, CNRS UMR9187-INSERMU1196, Université Paris-Saclay, 91405 Orsay, France
| | - Tao Jia
- Institut Curie, CNRS UMR9187-INSERMU1196, CMBC, 91405 Orsay, France.,Institut Curie, CNRS UMR9187-INSERMU1196, Université Paris-Saclay, 91405 Orsay, France
| | | | - Lina Saker
- INSERM UMRS 1007, Université de Paris, 75006 Paris, France
| | - Joël Poupon
- Hôpital Lariboisière, Laboratoire de Toxicologie Biologique, 2 rue Ambroise Paré, 75475 Paris, France
| | - Marie-Paule Teulade-Fichou
- Institut Curie, CNRS UMR9187-INSERMU1196, CMBC, 91405 Orsay, France.,Institut Curie, CNRS UMR9187-INSERMU1196, Université Paris-Saclay, 91405 Orsay, France
| | - Alain Nicolas
- Institut Curie, PSL Research University, CNRS UMR3244, Sorbonne Université, Telomeres and Cancer lab, 75005 Paris, France
| | - Arturo Londono-Vallejo
- Institut Curie, PSL Research University, CNRS UMR3244, Sorbonne Université, Telomeres and Cancer lab, 75005 Paris, France
| | - Sophie Bombard
- Institut Curie, CNRS UMR9187-INSERMU1196, CMBC, 91405 Orsay, France.,Institut Curie, CNRS UMR9187-INSERMU1196, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
2
|
Saker L, Ali S, Masserot C, Kellermann G, Poupon J, Teulade-Fichou MP, Ségal-Bendirdjian E, Bombard S. Platinum Complexes Can Bind to Telomeres by Coordination. Int J Mol Sci 2018; 19:E1951. [PMID: 29970863 PMCID: PMC6073198 DOI: 10.3390/ijms19071951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 01/07/2023] Open
Abstract
It is suggested that several compounds, including G-quadruplex ligands, can target telomeres, inducing their uncapping and, ultimately, cell death. However, it has never been demonstrated whether such ligands can bind directly and quantitatively to telomeres. Here, we employed the property of platinum and platinum-G-quadruplex complexes to target G-rich sequences to investigate and quantify their covalent binding to telomeres. Using inductively coupled plasma mass spectrometry, surprisingly, we found that, in cellulo, in the presence of cisplatin, a di-functional platinum complex, telomeric DNA was platinated 13-times less than genomic DNA in cellulo, as compared to in vitro data. On the contrary, the amount of mono-functional platinum complexes (Pt-ttpy and Pt-tpy) bound either to telomeric or to genomic DNA was similar and occurred in a G-quadruplex independent-manner. Importantly, the quantification revealed that the low level of cisplatin bound to telomeric DNA could not be the direct physical cause of TRF2 displacement from telomeres. Altogether, our data suggest that platinum complexes can affect telomeres both directly and indirectly.
Collapse
Affiliation(s)
- Lina Saker
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, 75006 Paris, France.
- Paris Descartes University, Paris Sorbonne Cité, 75006 Paris, France.
| | - Samar Ali
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, 75006 Paris, France.
- Paris Sud University, Paris-Saclay University, 91405 Orsay, France.
| | - Caroline Masserot
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, 75006 Paris, France.
- Paris Sud University, Paris-Saclay University, 91405 Orsay, France.
| | - Guillaume Kellermann
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, 75006 Paris, France.
- Paris Descartes University, Paris Sorbonne Cité, 75006 Paris, France.
| | - Joel Poupon
- Laboratoire de Toxicologie-Biologique, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475 Paris, France.
| | - Marie-Paule Teulade-Fichou
- Paris Sud University, Paris-Saclay University, 91405 Orsay, France.
- Institut Curie-Recherche, Bât. 112, Centre Universitaire, 91405 Orsay, France.
- CNRS UMR918, Centre Universitaire, 91405 Orsay, France.
- INSERM U1196, Centre Universitaire, 91405 Orsay, France.
| | - Evelyne Ségal-Bendirdjian
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, 75006 Paris, France.
- Paris Descartes University, Paris Sorbonne Cité, 75006 Paris, France.
- Paris Sud University, Paris-Saclay University, 91405 Orsay, France.
| | - Sophie Bombard
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, 75006 Paris, France.
- Paris Descartes University, Paris Sorbonne Cité, 75006 Paris, France.
- Paris Sud University, Paris-Saclay University, 91405 Orsay, France.
- Institut Curie-Recherche, Bât. 112, Centre Universitaire, 91405 Orsay, France.
- CNRS UMR918, Centre Universitaire, 91405 Orsay, France.
- INSERM U1196, Centre Universitaire, 91405 Orsay, France.
| |
Collapse
|
3
|
Expression of Telomere Repeat Binding Factor 1 and TRF2 in Prostate Cancer and Correlation with Clinical Parameters. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9764752. [PMID: 28808664 PMCID: PMC5541806 DOI: 10.1155/2017/9764752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 06/15/2017] [Indexed: 11/25/2022]
Abstract
Objective The objective of this study was to investigate the expression of telomere repeat binding factor 1 (TRF1) and TRF2 in prostate cancer and their relationships with clinicopathological features. Methods In total 50 prostate cancer tissues and paired benign prostate hyperplasia tissues were analyzed. The telomere-binding proteins TRF1 and TRF2 were measured using immunohistochemical method. Correlation analyses were used to evaluate the association between immunohistochemical score and clinical parameters. Results The expression of TRF1 was significantly higher in prostate cancer tissue than in benign prostate hyperplasia tissue (χ2 = 62.69, P < 0.01). Elevated levels of TRF2 were observed in both prostate cancer and benign prostate hyperplasia tissue (χ2 = 1.13, P = 0.76). TRF1 expression was significantly positively correlated with surgical capsular invasion (Spearman's r = 0.43, P = 0.002), seminal vesicle invasion (Spearman's r = 0.35, P = 0.01), lymph nodes metastases (Spearman's r = 0.41, P = 0.003), total prostate specific antigen (r = 0.61, P < 0.05), and Gleason score (r = 0.47, P = 0.01). However, there were no significant statistical differences between prostate volume (r = 0.06, P = 0.75) and age (r = 0.14, P = 0.09). Conclusion Both TRF1 and TRF2 were overexpressed in prostate cancer. There was no specificity of TRF2 in prostate cancer, while TRF1 may be associated with prostate cancer progression.
Collapse
|
4
|
Charif R, Granotier-Beckers C, Bertrand HC, Poupon J, Ségal-Bendirdjian E, Teulade-Fichou MP, Boussin FD, Bombard S. Association of a Platinum Complex to a G-Quadruplex Ligand Enhances Telomere Disruption. Chem Res Toxicol 2017; 30:1629-1640. [DOI: 10.1021/acs.chemrestox.7b00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Razan Charif
- Université
Paris Descartes, INSERM UMR-S-1007, 45 rue des Saints-Pères, 75006 Paris, France
| | - Christine Granotier-Beckers
- CEA/DRF/IRCM,
Laboratoire de RadioPathologie, INSERM U967, Université Paris
VII, Université Paris XI, 18
route du Panorama, 92265 Fontenay-aux-Roses Cedex, France
| | - Hélène Charlotte Bertrand
- Institut
Curie,
Centre Universitaire Paris Saclay, CNRS UMR9187/INSERM U1196, Bâtiments 110-112, 91405 Orsay, France
- Département
de Chimie, Ecole Normale Supérieure, PSL Research University,
UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités,
UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire
des Biomolécules (LBM), 24 rue
Lhomond, 75005 Paris, France
| | - Joël Poupon
- Laboratoire
de Toxicologie-Biologique, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475 Paris, France
| | | | - Marie-Paule Teulade-Fichou
- Institut
Curie,
Centre Universitaire Paris Saclay, CNRS UMR9187/INSERM U1196, Bâtiments 110-112, 91405 Orsay, France
| | - François D. Boussin
- CEA/DRF/IRCM,
Laboratoire de RadioPathologie, INSERM U967, Université Paris
VII, Université Paris XI, 18
route du Panorama, 92265 Fontenay-aux-Roses Cedex, France
| | - Sophie Bombard
- Université
Paris Descartes, INSERM UMR-S-1007, 45 rue des Saints-Pères, 75006 Paris, France
- Institut
Curie,
Centre Universitaire Paris Saclay, CNRS UMR9187/INSERM U1196, Bâtiments 110-112, 91405 Orsay, France
| |
Collapse
|
5
|
Betzer JF, Nuter F, Chtchigrovsky M, Hamon F, Kellermann G, Ali S, Calméjane MA, Roque S, Poupon J, Cresteil T, Teulade-Fichou MP, Marinetti A, Bombard S. Linking of Antitumor trans NHC-Pt(II) Complexes to G-Quadruplex DNA Ligand for Telomeric Targeting. Bioconjug Chem 2016; 27:1456-70. [PMID: 27115175 DOI: 10.1021/acs.bioconjchem.6b00079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G-quadruplex structures (G4) are promising anticancerous targets. A great number of small molecules targeting these structures have already been identified through biophysical methods. In cellulo, some of them are able to target either telomeric DNA and/or some sequences involved in oncogene promotors, both resulting in cancer cell death. However, only a few of them are able to bind to these structures G4 irreversibly. Here we combine within the same molecule the G4-binding agent PDC (pyridodicarboxamide) with a N-heterocyclic carbene-platinum complex NHC-Pt already identified for its antitumor properties. The resulting conjugate platinum complex NHC-Pt-PDC stabilizes strongly G-quadruplex structures in vitro, with affinity slightly affected as compared to PDC. In addition, we show that the new conjugate binds preferentially and irreversibly the quadruplex form of the human telomeric sequence with a profile in a way different from that of NHC-Pt thereby indicating that the platination reaction is oriented by stacking of the PDC moiety onto the G4-structure. In cellulo, NHC-Pt-PDC induces a significant loss of TRF2 from telomeres that is considerably more important than the effect of its two components alone, PDC and NHC-Pt, respectively.
Collapse
Affiliation(s)
- Jean-François Betzer
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay , 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Frédérick Nuter
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay , 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Mélanie Chtchigrovsky
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay , 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Florian Hamon
- CNRS UMR9187/INSERM U1196, Institut Curie, Centre Universitaire Paris XI , Bâtiments 110-112, 91405 Orsay, France
| | - Guillaume Kellermann
- INSERM UMR-S-1007, Université Paris Descartes , 45, rue des Saints Pères, 75270 Paris, France
| | - Samar Ali
- INSERM UMR-S-1007, Université Paris Descartes , 45, rue des Saints Pères, 75270 Paris, France
| | - Marie-Ange Calméjane
- INSERM UMR-S-1007, Université Paris Descartes , 45, rue des Saints Pères, 75270 Paris, France
| | - Sylvain Roque
- INSERM UMR-S-1007, Université Paris Descartes , 45, rue des Saints Pères, 75270 Paris, France
| | - Joël Poupon
- Laboratoire de Toxicologie Biologique, Hôpital Lariboisière , 2 rue Ambroise Paré, 75475 Paris, France
| | - Thierry Cresteil
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay , 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France.,Université Paris-Sud d'Innovation Thérapeutique , 5 rue J.B. Clément, 92290 Châtenay-Malabry, France
| | - Marie-Paule Teulade-Fichou
- CNRS UMR9187/INSERM U1196, Institut Curie, Centre Universitaire Paris XI , Bâtiments 110-112, 91405 Orsay, France
| | - Angela Marinetti
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay , 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Sophie Bombard
- CNRS UMR9187/INSERM U1196, Institut Curie, Centre Universitaire Paris XI , Bâtiments 110-112, 91405 Orsay, France.,INSERM UMR-S-1007, Université Paris Descartes , 45, rue des Saints Pères, 75270 Paris, France
| |
Collapse
|
6
|
Chu TW, MacNeil DE, Autexier C. Multiple Mechanisms Contribute to the Cell Growth Defects Imparted by Human Telomerase Insertion in Fingers Domain Mutations Associated with Premature Aging Diseases. J Biol Chem 2016; 291:8374-86. [PMID: 26887940 DOI: 10.1074/jbc.m116.714782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 11/06/2022] Open
Abstract
Normal human stem cells rely on low levels of active telomerase to sustain their high replicative requirements. Deficiency in telomere maintenance mechanisms leads to the development of premature aging diseases, such as dyskeratosis congenita and aplastic anemia. Mutations in the unique "insertion in fingers domain" (IFD) in the human telomerase reverse transcriptase catalytic subunit (hTERT) have previously been identified and shown to be associated with dyskeratosis congenita and aplastic anemia. However, little is known about the molecular mechanisms impacted by these IFD mutations. We performed comparative functional analyses of disease-associated IFD variants at the molecular and cellular levels. We report that hTERT-P721R- and hTERT-R811C-expressing cells exhibited growth defects likely due to impaired TPP1-mediated recruitment of these variant enzymes to telomeres. We showed that activity and processivity of hTERT-T726M failed to be stimulated by TPP1-POT1 overexpression and that dGTP usage by this variant was less efficient compared with the wild-type enzyme. hTERT-P785L-expressing cells did not show growth defects, and this variant likely confers cell survival through increased DNA synthesis and robust activity stimulation by TPP1-POT1. Altogether, our data suggest that multiple mechanisms contribute to cell growth defects conferred by the IFD variants.
Collapse
Affiliation(s)
- Tsz Wai Chu
- From the Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal H3T 1E2, Canada, Department of Medicine, McGill University, Montréal H4A 3J1, Canada, and
| | - Deanna Elise MacNeil
- From the Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal H3T 1E2, Canada, Department of Anatomy and Cell Biology, McGill University, Montréal H3A 0C7, Canada
| | - Chantal Autexier
- From the Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal H3T 1E2, Canada, Department of Medicine, McGill University, Montréal H4A 3J1, Canada, and Department of Anatomy and Cell Biology, McGill University, Montréal H3A 0C7, Canada
| |
Collapse
|
7
|
The Insertion in Fingers Domain in Human Telomerase Can Mediate Enzyme Processivity and Telomerase Recruitment to Telomeres in a TPP1-Dependent Manner. Mol Cell Biol 2015; 36:210-22. [PMID: 26503784 DOI: 10.1128/mcb.00746-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/19/2015] [Indexed: 01/11/2023] Open
Abstract
In most human cancer cells, cellular immortalization relies on the activation and recruitment of telomerase to telomeres. The telomere-binding protein TPP1 and the TEN domain of the telomerase catalytic subunit TERT regulate telomerase recruitment. TERT contains a unique domain, called the insertion in fingers domain (IFD), located within the conserved reverse transcriptase domain. We report the role of specific hTERT IFD residues in the regulation of telomerase activity and processivity, recruitment to telomeres, and cell survival. One hTERT IFD variant, hTERT-L805A, with reduced activity and processivity showed impaired telomere association, which could be partially rescued by overexpression of TPP1-POT1. Another previously reported hTERT IFD mutant enzyme with similarly low levels of activity and processivity, hTERT-V791Y, displayed defects in telomere binding and was insensitive to TPP1-POT1 overexpression. Our results provide the first evidence that the IFD can mediate enzyme processivity and telomerase recruitment to telomeres in a TPP1-dependent manner. Moreover, unlike hTERT-V791Y, hTERT-V763S, a variant with reduced activity but increased processivity, and hTERT-L805A, could both immortalize limited-life-span cells, but cells expressing these two mutant enzymes displayed growth defects, increased apoptosis, DNA damage at telomeres, and short telomeres. Our results highlight the importance of the IFD in maintaining short telomeres and in cell survival.
Collapse
|
8
|
Abstract
The increased level of chromosome instability in cancer cells, leading to aneuploidy and gross chromosomal rearrangements, is not only a driving force for oncogenesis but also can be the Achille's heel of the disease since many chemotherapies (CT) kill cells by inducing a non-tolerable rate of DNA damage. A wealth of published evidence showed that telomere stability can be more affected than the bulk of the genome by several conventional antineoplasic drugs. These results raise the interesting possibility that CT with genotoxic drugs preferentially target telomeres. In agreement with this view, accelerated shortening of telomere length has been described in blood lineage cells following high-dose CT (stem cell transplantation) or non-myeloablative CT. However, almost nothing is known on the consequences of this shortening in terms of telomere stability, senescence and on the development of second cancers or post-treatment aging-like syndromes in cancer survivors (cognitive defect, fertility impairment, etc.). In this article, we propose: (1) telomeres of cancer cells are preferential genomic targets of chemotherapies altering chromosome maintenance; (2) telomere functional parameters can be a surrogate marker of chemotherapy sensitivity and toxicity; (3) the use of anti-telomere molecule could greatly enhance the sensitivity to standards chemotherapies.
Collapse
|
9
|
Suntharalingam K, Vilar R. Interaction of metal complexes with nucleic acids. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1ic90027g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Bounaix Morand du Puch C, Barbier E, Kraut A, Couté Y, Fuchs J, Buhot A, Livache T, Sève M, Favier A, Douki T, Gasparutto D, Sauvaigo S, Breton J. TOX4 and its binding partners recognize DNA adducts generated by platinum anticancer drugs. Arch Biochem Biophys 2010; 507:296-303. [PMID: 21184731 DOI: 10.1016/j.abb.2010.12.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/12/2010] [Accepted: 12/17/2010] [Indexed: 10/18/2022]
Abstract
Platinating agents are commonly prescribed anticancer drugs damaging DNA. Induced lesions are recognized by a wide range of proteins. These are involved in cellular mechanisms such as DNA repair, mediation of cytotoxicity or chromatin remodeling. They therefore constitute crucial actors to understand pharmacology of these drugs. To expand our knowledge about this subproteome, we developed a ligand fishing trap coupled to high throughput proteomic tools. This trap is made of damaged plasmids attached to magnetic beads, and was exposed to cell nuclear extracts. Retained proteins were identified by nanoHPLC coupled to tandem mass spectrometry. This approach allowed us to establish a list of 38 proteins interacting with DNA adducts generated by cisplatin, oxaliplatin and satraplatin. Some of them were already known interactome members like high mobility group protein 1 (HMGB1) or the human upstream binding factor (hUBF), but we also succeeded in identifying unexpected proteins such as TOX HMG box family member 4 (TOX4), phosphatase 1 nuclear targeting subunit (PNUTS), and WD repeat-containing protein 82 (WDR82), members of a recently discovered complex. Interaction between TOX4 and platinated DNA was subsequently validated by surface plasmon resonance imaging (SPRi). These interactions highlight new cellular responses to DNA damage induced by chemotherapeutic agents.
Collapse
Affiliation(s)
- Christophe Bounaix Morand du Puch
- CEA Grenoble, INAC, SCIB (UMR E_3 CEA-Université Joseph Fourier, CNRS FRE3200)-Laboratoire Lésions des Acides Nucléiques, 17 Rue des Martyrs, 38054 Grenoble Cedex 09, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|