1
|
Shuai C, Chen X, He C, Chen M, Peng S, Yang W. Fe-doped mesoporous silica catalyzes ascorbic acid oxidation for tumor-specific therapy in scaffold. Colloids Surf B Biointerfaces 2023; 225:113251. [PMID: 36931045 DOI: 10.1016/j.colsurfb.2023.113251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
Ascorbic acid (AA) is a promising antitumor agent, yet its autooxidation is too slow which constrains the further application. Fortunately, the autoxidation process can be accelerated by transition metal catalysts, especially Fe3+ ions. In this study, AA was loaded to Fe-doped mesoporous silica (designated as AA@Fe-SiO2), which was introduced into poly-L-lactic acid (PLLA) and then prepared into a scaffold. Mechanistically, AA@Fe-SiO2 degraded in acidic tumor microenvironment because excessive H+ substituted Fe atoms in the iron silicate framework, releasing Fe3+ and AA. The Fe3+ boosted the pro-oxidation reaction of AA, generating numerous hydrogen peroxide (H2O2) and Fe2+. Then, Fe2+ reacted with H2O2 to initiate Fenton reactions favoring hydroxyl radical generation, triggering oxidative damage on tumor cells to implement tumor-specific therapy. Results showed that the release amount of AA in acidic solution was about 3 times higher than that in neutral solution, which was attributed to the pH-dependency of the degradation of AA@Fe-SiO2 in scaffold. Furthermore, the scaffold generated numerous ascorbate radical intermediate and increased the H2O2 concentration by 120.2%, demonstrating that Fe3+ remarkably accelerated the oxidation rate of AA. Cell experimental results showed that the scaffold caused massive apoptosis of tumor cells, while no obvious cytotoxicity to normal cells, confirming the antitumor specificity of scaffold. This work paves a promising way to construct a biodegradable and catalytic scaffold, featuring effective tumor-specific therapy.
Collapse
Affiliation(s)
- Cijun Shuai
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China; State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China; Shenzhen Institute of Information Technology, School of Sino-German Robotics, Shenzhen 518115, China
| | - Xuan Chen
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Chongxian He
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
| | - Min Chen
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410013, China; School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China.
| | - Wenjing Yang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China.
| |
Collapse
|
2
|
Binding of ruthenium and osmium at non‑iron sites of transferrin accounts for their iron-independent cellular uptake. J Inorg Biochem 2022; 234:111885. [DOI: 10.1016/j.jinorgbio.2022.111885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 05/21/2022] [Accepted: 05/29/2022] [Indexed: 11/22/2022]
|
3
|
Teixeira RG, Brás AR, Côrte-Real L, Tatikonda R, Sanches A, Robalo MP, Avecilla F, Moreira T, Garcia MH, Haukka M, Preto A, Valente A. Novel ruthenium methylcyclopentadienyl complex bearing a bipyridine perfluorinated ligand shows strong activity towards colorectal cancer cells. Eur J Med Chem 2018; 143:503-514. [DOI: 10.1016/j.ejmech.2017.11.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/06/2017] [Accepted: 11/21/2017] [Indexed: 01/04/2023]
|
4
|
Alves de Souza CE, Alves de Souza HDM, Stipp MC, Corso CR, Galindo CM, Cardoso CR, Dittrich RL, de Souza Ramos EA, Klassen G, Carlos RM, Correia Cadena SMS, Acco A. Ruthenium complex exerts antineoplastic effects that are mediated by oxidative stress without inducing toxicity in Walker-256 tumor-bearing rats. Free Radic Biol Med 2017. [PMID: 28629835 DOI: 10.1016/j.freeradbiomed.2017.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present study evaluated the in vivo antitumor effects and toxicity of a new Ru(II) compound, cis-(Ru[phen]2[ImH]2)2+ (also called RuphenImH [RuC]), against Walker-256 carcinosarcoma in rats. After subcutaneous inoculation of Walker-256 cells in the right pelvic limb, male Wistar rats received 5 or 10mgkg-1 RuC orally or intraperitoneally (i.p.) every 3 days for 13 days. A positive control group (2mgkg-1 cisplatin) and negative control group (vehicle) were also used. Tumor progression was checked daily. After treatment, tumor weight, plasma biochemistry, hematology, oxidative stress, histology, and tumor cell respiration were evaluated. RuC was effective against tumors when administered i.p. but not orally. The highest i.p. dose of RuC (10mgkg-1) significantly reduced tumor volume and weight, induced oxidative stress in tumor tissue, reduced the respiration of tumor cells, and induced necrosis but did not induce apoptosis in the tumor. No clinical signs of toxicity or death were observed in tumor-bearing or healthy rats that were treated with RuC. These results suggest that RuC has antitumor activity through the modulation of oxidative stress and impairment of oxidative phosphorylation, thus promoting Walker-256 cell death without causing systemic toxicity. These effects make RuC a promising anticancer drug for clinical evaluation.
Collapse
Affiliation(s)
| | | | | | - Claudia Rita Corso
- Department of Pharmacology, Federal University of Parana, Curitiba, Brazil
| | | | | | | | | | - Giseli Klassen
- Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil
| | - Rose Maria Carlos
- Department of Chemistry, Federal São Carlos University, São Carlos, Brazil
| | | | - Alexandra Acco
- Department of Pharmacology, Federal University of Parana, Curitiba, Brazil.
| |
Collapse
|
5
|
Markham J, Liang J, Levina A, Mak R, Johannessen B, Kappen P, Glover CJ, Lai B, Vogt S, Lay PA. (Pentamethylcyclopentadienato)rhodium Complexes for Delivery of the Curcumin Anticancer Drug. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jack Markham
- School of Chemistry; The University of Sydney; 2006 NSW Australia
| | - Jun Liang
- School of Chemistry; The University of Sydney; 2006 NSW Australia
| | - Aviva Levina
- School of Chemistry; The University of Sydney; 2006 NSW Australia
| | - Rachel Mak
- School of Chemistry; The University of Sydney; 2006 NSW Australia
| | | | - Peter Kappen
- Australian Synchrotron; 800 Blackburn Rd 3168 Clayton VIC Australia
| | - Chris J. Glover
- Australian Synchrotron; 800 Blackburn Rd 3168 Clayton VIC Australia
| | - Barry Lai
- Advanced Photon Source, Building 401; Argonne National Laboratory; 9700 South Cass Ave 60439 Lemont IL USA
| | - Stefan Vogt
- Advanced Photon Source, Building 401; Argonne National Laboratory; 9700 South Cass Ave 60439 Lemont IL USA
| | - Peter A. Lay
- School of Chemistry; The University of Sydney; 2006 NSW Australia
| |
Collapse
|
6
|
Riccardi C, Musumeci D, Irace C, Paduano L, Montesarchio D. RuIIIComplexes for Anticancer Therapy: The Importance of Being Nucleolipidic. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600943] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences; University of Napoli Federico II; Via Cintia 21 80126 Napoli Italy
| | - Domenica Musumeci
- Department of Chemical Sciences; University of Napoli Federico II; Via Cintia 21 80126 Napoli Italy
| | - Carlo Irace
- Department of Pharmacy; University of Napoli Federico II; Via D. Montesano 49 80131 Napoli Italy
| | - Luigi Paduano
- Department of Chemical Sciences; University of Napoli Federico II; Via Cintia 21 80126 Napoli Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences; University of Napoli Federico II; Via Cintia 21 80126 Napoli Italy
| |
Collapse
|
7
|
Aleksenko SS. Determination of adduct forms of antitumor ruthenium(III) complex with cytosolic components by capillary electrophoresis with mass spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1134/s1061934816070030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
|
9
|
Mu C, Chang SW, Prosser KE, Leung AWY, Santacruz S, Jang T, Thompson JR, Yapp DTT, Warren JJ, Bally MB, Beischlag TV, Walsby CJ. Induction of Cytotoxicity in Pyridine Analogues of the Anti-metastatic Ru(III) Complex NAMI-A by Ferrocene Functionalization. Inorg Chem 2015; 55:177-90. [PMID: 26652771 DOI: 10.1021/acs.inorgchem.5b02109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of novel ferrocene (Fc) functionalized Ru(III) complexes was synthesized and characterized. These compounds are derivatives of the anti-metastatic Ru(III) complex imidazolium [trans-RuCl4(1H-imidazole) (DMSO-S)] (NAMI-A) and are derived from its pyridine analogue (NAMI-Pyr), with direct coupling of Fc to pyridine at the 4 or 3 positions, or at the 4 position via a two-carbon linker, which is either unsaturated (vinyl) or saturated (ethyl). Electron paramagnetic resonance (EPR) and UV-vis spectroscopic studies of the ligand exchange processes of the compounds in phosphate buffered saline (PBS) report similar solution behavior to NAMI-Pyr. However, the complex with Fc substitution at the 3 position of the coordinated pyridine shows greater solution stability, through resistance to the formation of oligomeric species. Further EPR studies of the complexes with human serum albumin (hsA) indicate that the Fc groups enhance noncoordinate interactions with the protein and help to inhibit the formation of protein-coordinated species, suggesting the potential for enhanced bioavailability. Cyclic voltammetry measurements demonstrate that the Fc groups modestly reduce the reduction potential of the Ru(III) center as compared to NAMI-Pyr, while the reduction potentials of the Fc moieties of the four compounds vary by 217 mV, with the longer linkers giving significantly lower values of E1/2. EPR spectra of the compounds with 2-carbon linkers show the formation of a high-spin Fe(III) species (S = 5/2) in PBS with a distinctive signal at g = 4.3, demonstrating oxidation of the Fe(II) ferrocene center and likely reflecting degradation products. Density functional theory calculations and paramagnetic (1)H NMR describe delocalization of spin density onto the ligands and indicate that the vinyl linker could be a potential pathway for electron transfer between the Ru and Fe centers. In the case of the ethyl linker, electron transfer is suggested to occur via an indirect mechanism enabled by the greater flexibility of the ligand. In vitro assays with the SW480 cell line reveal cytotoxicity induced by the ruthenium ferrocenylpyridine complexes that is at least an order of magnitude higher than the unfunctionalized complex, NAMI-Pyr. Furthermore, migration studies with LNCaP cells reveal that Fc functionalization does not reduce the ability of the compounds to inhibit cell motility. Overall, these studies demonstrate that NAMI-A-type compounds can be functionalized with redox-active ligands to produce both cytotoxic and anti-metastatic activity.
Collapse
Affiliation(s)
| | | | | | - Ada W Y Leung
- Department of Experimental Therapeutics, BC Cancer Agency , 675 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | | | | | | | - Donald T T Yapp
- Department of Experimental Therapeutics, BC Cancer Agency , 675 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | | | - Marcel B Bally
- Department of Experimental Therapeutics, BC Cancer Agency , 675 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | | | | |
Collapse
|
10
|
Kuhn PS, Pichler V, Roller A, Hejl M, Jakupec MA, Kandioller W, Keppler BK. Improved reaction conditions for the synthesis of new NKP-1339 derivatives and preliminary investigations on their anticancer potential. Dalton Trans 2015; 44:659-68. [DOI: 10.1039/c4dt01645a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
NKP-1339 and KP1019 derivatives were synthesized under mild reaction settings in high yields. The characterization and influence of the N-alkyl substitution on the aqueous stability, redox potentials, in vitro cytotoxicity and cellular accumulation are discussed.
Collapse
Affiliation(s)
- P.-S. Kuhn
- Institute of Inorganic Chemistry
- Faculty of Chemistry
- University of Vienna
- 1090 Vienna
- Austria
| | - V. Pichler
- Institute of Inorganic Chemistry
- Faculty of Chemistry
- University of Vienna
- 1090 Vienna
- Austria
| | - A. Roller
- Institute of Inorganic Chemistry
- Faculty of Chemistry
- University of Vienna
- 1090 Vienna
- Austria
| | - M. Hejl
- Institute of Inorganic Chemistry
- Faculty of Chemistry
- University of Vienna
- 1090 Vienna
- Austria
| | - M. A. Jakupec
- Institute of Inorganic Chemistry
- Faculty of Chemistry
- University of Vienna
- 1090 Vienna
- Austria
| | - W. Kandioller
- Institute of Inorganic Chemistry
- Faculty of Chemistry
- University of Vienna
- 1090 Vienna
- Austria
| | - B. K. Keppler
- Institute of Inorganic Chemistry
- Faculty of Chemistry
- University of Vienna
- 1090 Vienna
- Austria
| |
Collapse
|
11
|
Trondl R, Heffeter P, Kowol CR, Jakupec MA, Berger W, Keppler BK. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem Sci 2014. [DOI: 10.1039/c3sc53243g] [Citation(s) in RCA: 489] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
12
|
Fischer B, Heffeter P, Kryeziu K, Gille L, Meier SM, Berger W, Kowol CR, Keppler BK. Poly(lactic acid) nanoparticles of the lead anticancer ruthenium compound KP1019 and its surfactant-mediated activation. Dalton Trans 2014; 43:1096-104. [DOI: 10.1039/c3dt52388h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Aleksenko SS, Matczuk M, Lu X, Foteeva LS, Pawlak K, Timerbaev AR, Jarosz M. Metallomics for drug development: an integrated CE-ICP-MS and ICP-MS approach reveals the speciation changes for an investigational ruthenium(iii) drug bound to holo-transferrin in simulated cancer cytosol. Metallomics 2013; 5:955-63. [DOI: 10.1039/c3mt00092c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Bhattacharyya S, Sarkar A, Dey SK, Jose GP, Mukherjee A, Sengupta TK. Copper(ii) complex of methionine conjugated bis-pyrazole based ligand promotes dual pathway for DNA cleavage. Dalton Trans 2013; 42:11709-19. [DOI: 10.1039/c3dt51296g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Santos RLSR, van Eldik R, de Oliveira Silva D. Kinetic and mechanistic studies on reactions of diruthenium(ii,iii) with biologically relevant reducing agents. Dalton Trans 2013; 42:16796-805. [DOI: 10.1039/c3dt51763b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Webb MI, Walsby CJ. EPR as a probe of the intracellular speciation of ruthenium(iii) anticancer compounds. Metallomics 2013; 5:1624-33. [DOI: 10.1039/c3mt00090g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Bytzek AK, Hartinger CG. Capillary electrophoretic methods in the development of metal-based therapeutics and diagnostics: new methodology and applications. Electrophoresis 2012; 33:622-34. [PMID: 22451055 DOI: 10.1002/elps.201100402] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent years, capillary electrophoresis (CE) has matured to a standard method in medicinal inorganic chemistry. More and more steps of the drug discovery process are followed by CE. However, not only the number of applications has steadily increased but also the variety of used methodology has significantly broadened and, as compared to a few years ago, a wider scope of separation modes and hyphenated systems has been used. Herein, a summary of the newly utilized CE methods and their applications in metallodrug research in the timeframe 2006-2011 is presented, following related reviews from 2003 and 2007 (Electrophoresis, 2003, 24, 2023-2037; Electrophoresis 2007, 28, 3436-3446). Areas covered include impurity profiling, quality control of pharmaceutical formulations, lipophilicity estimation, interactions between metallodrugs and proteins or nucleotides, and characterization and also quantification of metabolites in biological matrices and real-world samples.
Collapse
Affiliation(s)
- Anna K Bytzek
- Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | | |
Collapse
|
18
|
|