1
|
González-Matos M, Aguado ME, Izquierdo M, Monzote L, González-Bacerio J. Compounds with potentialities as novel chemotherapeutic agents in leishmaniasis at preclinical level. Exp Parasitol 2024; 260:108747. [PMID: 38518969 DOI: 10.1016/j.exppara.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Leishmaniasis are neglected infectious diseases caused by kinetoplastid protozoan parasites from the genus Leishmania. These sicknesses are present mainly in tropical regions and almost 1 million new cases are reported each year. The absence of vaccines, as well as the high cost, toxicity or resistance to the current drugs determines the necessity of new treatments against these pathologies. In this review, several compounds with potentialities as new antileishmanial drugs are presented. The discussion is restricted to the preclinical level and molecules are organized according to their chemical nature, source and molecular targets. In this manner, we present antimicrobial peptides, flavonoids, withanolides, 8-aminoquinolines, compounds from Leish-Box, pyrazolopyrimidines, and inhibitors of tubulin polymerization/depolymerization, topoisomerase IB, proteases, pteridine reductase, N-myristoyltransferase, as well as enzymes involved in polyamine metabolism, response against oxidative stress, signaling pathways, and sterol biosynthesis. This work is a contribution to the general knowledge of these compounds as antileishmanial agents.
Collapse
Affiliation(s)
- Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Lianet Monzote
- Department of Parasitology, Center for Research, Diagnosis and Reference, Tropical Medicine Institute "Pedro Kourí", Autopista Novia Del Mediodía Km 6½, La Lisa, La Habana, Cuba.
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba; Department of Biochemistry, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba.
| |
Collapse
|
2
|
Richa, Kumar V, Kataria R. Phenanthroline and Schiff Base associated Cu(II)-coordinated compounds containing N, O as donor atoms for potent anticancer activity. J Inorg Biochem 2024; 251:112440. [PMID: 38065049 DOI: 10.1016/j.jinorgbio.2023.112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
As an inherent metal ion, copper has been the subject of investigation for developing a novel antitumoral compound that exhibits fewer adverse effects. Copper serves as a cofactor in multiple enzymes, generates reactive oxygen species (ROS), facilitates tumour evolution, metastasis and angiogenesis and has been detected at elevated concentrations in the serum and tissues of various human cancer types. In the given setting, utilising two methodologies in developing novel Copper-based pharmaceuticals for anti-cancer applications is standard practice. These approaches involve either the sequestration of unbound Copper ions or the synthesis of Copper complexes that induce cellular apoptosis. In the past four decades, the latter system has been used, leading to numerous reviews that have examined the anticancer characteristics of a wide range of Copper complexes. These analyses have consistently demonstrated that multiple factors frequently influence the efficacy of these compounds. This review examines the possible anticancer properties of copper and Cu(II) complexes that incorporate Schiff base ligands containing 1,10-phenanthroline. The present study will comprehensively analyse the examined cell lines and mechanistic research associated with each complex.
Collapse
Affiliation(s)
- Richa
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Vinod Kumar
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Ramesh Kataria
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
3
|
Fontes JV, Santos IA, Rosa LB, Lima RLA, Jardim ACG, Miguel DC, Abbehausen C. Antileishmanial and Anti‐Chikungunya Activity of Cu(I)‐N‐Heterocyclic Carbenes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Josielle V. Fontes
- Institute of Chemistry University of Campinas - UNICAMP PO Box 6154 13083-970 Campinas SP Brazil
| | - Igor A. Santos
- Institute of Biomedical Sciences Federal University of Uberlândia Uberlandia MG Brazil
| | - Letícia B. Rosa
- Institute of Biology University of Campinas - UNICAMP 13083-862 Campinas SP Brazil
| | - Rochanna L. A. Lima
- Institute of Chemistry University of Campinas - UNICAMP PO Box 6154 13083-970 Campinas SP Brazil
| | - Ana C. G. Jardim
- Institute of Biomedical Sciences Federal University of Uberlândia Uberlandia MG Brazil
| | - Danilo C. Miguel
- Institute of Biology University of Campinas - UNICAMP 13083-862 Campinas SP Brazil
| | - Camilla Abbehausen
- Institute of Chemistry University of Campinas - UNICAMP PO Box 6154 13083-970 Campinas SP Brazil
| |
Collapse
|
4
|
Jain S, Sahu U, Kumar A, Khare P. Metabolic Pathways of Leishmania Parasite: Source of Pertinent Drug Targets and Potent Drug Candidates. Pharmaceutics 2022; 14:pharmaceutics14081590. [PMID: 36015216 PMCID: PMC9416627 DOI: 10.3390/pharmaceutics14081590] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Leishmaniasis is a tropical disease caused by a protozoan parasite Leishmania that is transmitted via infected female sandflies. At present, leishmaniasis treatment mainly counts on chemotherapy. The currently available drugs against leishmaniasis are costly, toxic, with multiple side effects, and limitations in the administration route. The rapid emergence of drug resistance has severely reduced the potency of anti-leishmanial drugs. As a result, there is a pressing need for the development of novel anti-leishmanial drugs with high potency, low cost, acceptable toxicity, and good pharmacokinetics features. Due to the availability of preclinical data, drug repurposing is a valuable approach for speeding up the development of effective anti-leishmanial through pointing to new drug targets in less time, having low costs and risk. Metabolic pathways of this parasite play a crucial role in the growth and proliferation of Leishmania species during the various stages of their life cycle. Based on available genomics/proteomics information, known pathways-based (sterol biosynthetic pathway, purine salvage pathway, glycolysis, GPI biosynthesis, hypusine, polyamine biosynthesis) Leishmania-specific proteins could be targeted with known drugs that were used in other diseases, resulting in finding new promising anti-leishmanial therapeutics. The present review discusses various metabolic pathways of the Leishmania parasite and some drug candidates targeting these pathways effectively that could be potent drugs against leishmaniasis in the future.
Collapse
Affiliation(s)
- Surbhi Jain
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462026, Madhya Pradesh, India; (S.J.); (U.S.)
| | - Utkarsha Sahu
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462026, Madhya Pradesh, India; (S.J.); (U.S.)
- Division of Synthetic Biology, Absolute Foods, Plot 68, Sector 44, Gurugram 122003, Haryana, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, Chhattisgarh, India
- Correspondence: or (A.K.); (P.K.)
| | - Prashant Khare
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462026, Madhya Pradesh, India; (S.J.); (U.S.)
- Division of Synthetic Biology, Absolute Foods, Plot 68, Sector 44, Gurugram 122003, Haryana, India
- Correspondence: or (A.K.); (P.K.)
| |
Collapse
|
5
|
Artem’eva EV, Duffin RN, Munuganti S, Efremov AN, Andrews PC, Sharutina OK, Sharutin VV. Modulating aryl substitution: Does it play a role in the anti-leishmanial activity of a series of tetra-aryl Sb(V) fluorinated carboxylates? J Inorg Biochem 2022; 234:111864. [DOI: 10.1016/j.jinorgbio.2022.111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/04/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
|
6
|
Scapinello L, Vesco G, Nardo L, Maspero A, Vavassori F, Galli S, Penoni A. Synthesis, Characterization and DNA-Binding Affinity of a New Zinc(II) Bis(5-methoxy-indol-3-yl)propane-1,3-dione Complex. Pharmaceuticals (Basel) 2021; 14:760. [PMID: 34451857 PMCID: PMC8398859 DOI: 10.3390/ph14080760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/27/2022] Open
Abstract
The novel zinc(II) µ-oxo-bridged-dimeric complex [Zn2(µ-O)2(BMIP)2] (BMIP = 1,3-bis(5-methoxy-1-methyl-1H-indol-3-yl)propane-1,3-dione), 1, was synthetized and fully characterized. The spectral data indicate a zincoxane molecular structure, with the BMIP ligand coordinating in its neutral form via its oxygen atoms. Structural changes in 1 in dimethylsulfoxide (DMSO) were evidenced by means of spectroscopic techniques including infrared absorption and nuclear magnetic resonance, showing DMSO entrance in the coordination sphere of the metal ion. The resulting complex [Zn2(µ-O)2(BMIP)2(DMSO)], 2, readily reacts in the presence of N-methyl-imidazole (NMI), a liquid-phase nucleoside mimic, to form [Zn2(µ-O)2(BMIP)2(NMI)], 3, through DMSO displacement. The three complexes show high thermal stability, demonstrating that 1 has high affinity for hard nucleophiles. Finally, with the aim of probing the suitability of this system as model scaffold for new potential anticancer metallodrugs, the interactions of 1 with calf thymus DNA were investigated in vitro in pseudo-physiological environment through UV-Vis absorption and fluorescence emission spectroscopy, as well as time-resolved fluorescence studies. The latter analyses revealed that [Zn2(µ-O)2(BMIP)2(DMSO)] binds to DNA with high affinity upon DMSO displacement, opening new perspectives for the development of optimized drug substances.
Collapse
Affiliation(s)
| | | | | | - Angelo Maspero
- Department of Science and High Technology, Università degli Studi dell’Insubria, Via Valleggio 9, 22100 Como, Italy; (L.S.); (G.V.); (L.N.); (F.V.); (S.G.); (A.P.)
| | | | | | | |
Collapse
|
7
|
Navarro M, Justo RMS, Delgado GYS, Visbal G. Metallodrugs for the Treatment of Trypanosomatid Diseases: Recent Advances and New Insights. Curr Pharm Des 2021; 27:1763-1789. [PMID: 33185155 DOI: 10.2174/1381612826666201113104633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Trypanosomatid parasites are responsible for many Neglected Tropical Diseases (NTDs). NTDs are a group of illnesses that prevail in low-income populations, such as in tropical and subtropical areas of Africa, Asia, and the Americas. The three major human diseases caused by trypanosomatids are African trypanosomiasis, Chagas disease and leishmaniasis. There are known drugs for the treatment of these diseases that are used extensively and are affordable; however, the use of these medicines is limited by several drawbacks such as the development of chemo-resistance, side effects such as cardiotoxicity, low selectivity, and others. Therefore, there is a need to develop new chemotherapeutic against these tropical parasitic diseases. Metal-based drugs against NTDs have been discussed over the years as alternative ways to overcome the difficulties presented by approved antiparasitic agents. The study of late transition metal-based drugs as chemotherapeutics is an exciting research field in chemistry, biology, and medicine due to the ability to develop multitarget antiparasitic agents. The evaluation of the late transition metal complexes for the treatment of trypanosomatid diseases is provided here, as well as some insights about their mechanism of action.
Collapse
Affiliation(s)
- Maribel Navarro
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Rodrigo M S Justo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Giset Y Sánchez Delgado
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Gonzalo Visbal
- Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Brazil
| |
Collapse
|
8
|
Rosa LB, Aires RL, Oliveira LS, Fontes JV, Miguel DC, Abbehausen C. A "Golden Age" for the discovery of new antileishmanial agents: Current status of leishmanicidal gold complexes and prospective targets beyond the trypanothione system. ChemMedChem 2021; 16:1681-1695. [PMID: 33615725 DOI: 10.1002/cmdc.202100022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is one of the most neglected diseases worldwide and is considered a serious public health issue. The current therapeutic options have several disadvantages that make the search for new therapeutics urgent. Gold compounds are emerging as promising candidates based on encouraging in vitro and limited in vivo results for several AuI and AuIII complexes. The antiparasitic mechanisms of these molecules remain only partially understood. However, a few studies have proposed the trypanothione redox system as a target, similar to the mammalian thioredoxin system, pointed out as the main target for several gold compounds with significant antitumor activity. In this review, we present the current status of the investigation and design of gold compounds directed at treating leishmaniasis. In addition, we explore potential targets in Leishmania parasites beyond the trypanothione system, taking into account previous studies and structure modulation performed for gold-based compounds.
Collapse
Affiliation(s)
- Leticia B Rosa
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Rochanna L Aires
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Laiane S Oliveira
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Josielle V Fontes
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Danilo C Miguel
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| |
Collapse
|
9
|
Ong YC, Roy S, Andrews PC, Gasser G. Metal Compounds against Neglected Tropical Diseases. Chem Rev 2018; 119:730-796. [DOI: 10.1021/acs.chemrev.8b00338] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yih Ching Ong
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Saonli Roy
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philip C. Andrews
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
10
|
New iminodibenzyl derivatives with anti-leishmanial activity. J Inorg Biochem 2017; 172:9-15. [PMID: 28414928 DOI: 10.1016/j.jinorgbio.2017.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/06/2017] [Accepted: 04/02/2017] [Indexed: 01/27/2023]
Abstract
Leishmaniasis is an infection caused by protozoa of the genus Leishmania and transmitted by sandflies. Current treatments are expensive and time-consuming, involving Sb(V)-based compounds, lipossomal amphotericin B and miltefosine. Recent studies suggest that inhibition of trypanothione reductase (TR) could be a specific target in the development of new drugs because it is essential and exclusive to trypanosomatids. This work presents the synthesis and characterization of new iminodibenzyl derivatives (dado) with ethylenediamine (ea), ethanolamine (en) and diethylenetriamine (dien) and their copper(II) complexes. Computational methods indicated that the complexes were highly lipophilic. Pro-oxidant activity assays by oxidation of the dihydrorhodamine (DHR) fluorimetric probe showed that [Cu(dado-ea)]2+ has the highest rate of oxidation, independent of H2O2 concentration. The toxicity to L. amazonensis promastigotes and RAW 264,7 macrophages was assessed, showing that dado-en was the most active new compound. Complexation to copper did not have an appreciable effect on the toxicity of the compounds.
Collapse
|
11
|
Synthesis and antimicrobial properties of lipophilic Schiff base copper and palladium complexes. TRANSIT METAL CHEM 2015. [DOI: 10.1007/s11243-015-9953-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Patterson AE, Bowes EG, Bos A, O’Neill T, Li H, Flewelling A, Vogels CM, Decken A, Gray CA, Westcott SA. Anti-mycobacterial activities of copper(II) salicylaldimine complexes derived from long-chain aliphatic amines. CAN J CHEM 2013. [DOI: 10.1139/cjc-2013-0274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Twelve copper(II) Schiff base complexes derived from lipophilic amines have been prepared using either salicylaldehyde or ortho-vanillin via a microwave-assisted reaction. All complexes have been obtained elementally pure and an X-ray diffraction of an isopentyl derivative has confirmed the structure of these compounds. All complexes showed a promising degree of anti-mycobacterial activity against Mycobacterium tuberculosis, where activity seemed to increase with an increase in the length of the aliphatic chain.
Collapse
Affiliation(s)
- Alyssa E. Patterson
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Eric G. Bowes
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Allyson Bos
- Department of Biology, University of New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Taryn O’Neill
- Department of Biology, University of New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Haoxin Li
- Department of Biology, University of New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Andrew Flewelling
- Department of Biology, University of New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Andreas Decken
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Christopher A. Gray
- Department of Biology, University of New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|