1
|
Kim SH, Oh JM, Roh H, Lee KW, Lee JH, Lee WJ. Zinc-Alpha-2-Glycoprotein Peptide Downregulates Type I and III Collagen Expression via Suppression of TGF-β and p-Smad 2/3 Pathway in Keloid Fibroblasts and Rat Incisional Model. Tissue Eng Regen Med 2024; 21:1079-1092. [PMID: 39105875 PMCID: PMC11416446 DOI: 10.1007/s13770-024-00664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Keloids and hypertrophic scars result from abnormal collagen accumulation and the inhibition of its degradation. Although the pathogenesis remains unclear, excessive accumulation of the extracellular matrix (ECM) is believed to be associated with the TGF-β/SMAD pathway. Zinc-alpha-2-glycoprotein (ZAG) inhibits TGF-β-mediated epithelial-to-mesenchymal transdifferentiation and impacts skin barrier functions. In this study, we investigated the potential of a small ZAG-derived peptide against hypertrophic scars and keloids. METHODS The study examined cell proliferation and mRNA expression of collagen types I and III in human dermal fibroblast (HDF) cell lines and keloid-derived fibroblasts (KF) following ZAG peptide treatment. A rat incisional wound model was used to evaluate the effect of ZAG peptide in scar tissue. RESULTS Significantly lower mRNA levels of collagen types I and III were observed in ZAG-treated fibroblasts, whereas matrix metalloproteinase (MMP)-1 and MMP-3 mRNA levels were significantly increased in HDFs and KFs. Furthermore, ZAG peptide significantly reduced protein expression of collagen type I and III, TGF-β1, and p-Smad2/3 complex in KFs. Rat incisional scar models treated with ZAG peptide presented narrower scar areas and reduced immature collagen deposition, along with decreased expression of collagen type I, α-SMA, and p-Smad2/3. CONCLUSION ZAG peptide effectively suppresses the TGF-β and p-Smad2/3 pathway and inhibits excessive cell proliferation during scar formation, suggesting its potential therapeutic implications against keloids and hypertrophic scars.
Collapse
Affiliation(s)
- Shin Hyun Kim
- Department of Plastic and Reconstructive Surgery, Yonsei University, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Jung Min Oh
- Department of Plastic and Reconstructive Surgery, Yonsei University, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Hyun Roh
- Department of Plastic and Reconstructive Surgery, Yonsei University, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Kee-Won Lee
- R&D Center, L&C BIO Co., Ltd, 82, Naruteo-Ro, Seocho-Gu, Seoul, Republic of Korea
| | - Ju Hee Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, Republic of Korea
| | - Won Jai Lee
- Department of Plastic and Reconstructive Surgery, Yonsei University, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea.
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea.
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Mechanistic Insight into the Fragmentation of Type I Collagen Fibers into Peptides and Amino Acids by a Vibrio Collagenase. Appl Environ Microbiol 2022; 88:e0167721. [PMID: 35285716 DOI: 10.1128/aem.01677-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio collagenases of the M9A subfamily are closely related to Vibrio pathogenesis for their role in collagen degradation during host invasion. Although some Vibrio collagenases have been characterized, the collagen degradation mechanism of Vibrio collagenase is still largely unknown. Here, an M9A collagenase, VP397, from marine Vibrio pomeroyi strain 12613 was characterized, and its fragmentation pattern on insoluble type I collagen fibers was studied. VP397 is a typical Vibrio collagenase composed of a catalytic module featuring a peptidase M9N domain and a peptidase M9 domain and two accessory bacterial prepeptidase C-terminal domains (PPC domains). It can hydrolyze various collagenous substrates, including fish collagen, mammalian collagens of types I to V, triple-helical peptide [(POG)10]3, gelatin, and 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-o-Arg (Pz-peptide). Atomic force microscopy (AFM) observation and biochemical analyses revealed that VP397 first assaults the C-telopeptide region to dismantle the compact structure of collagen and dissociate tropocollagen fragments, which are further digested into peptides and amino acids by VP397 mainly at the Y-Gly bonds in the repeating Gly-X-Y triplets. In addition, domain deletion mutagenesis showed that the catalytic module of VP397 alone is capable of hydrolyzing type I collagen fibers and that its C-terminal PPC2 domain functions as a collagen-binding domain during collagenolysis. Based on our results, a model for the collagenolytic mechanism of VP397 is proposed. This study sheds light on the mechanism of collagen degradation by Vibrio collagenase, offering a better understanding of the pathogenesis of Vibrio and helping in developing the potential applications of Vibrio collagenase in industrial and medical areas. IMPORTANCE Many Vibrio species are pathogens and cause serious diseases in humans and aquatic animals. The collagenases produced by pathogenic Vibrio species have been regarded as important virulence factors, which occasionally exhibit direct pathogenicity to the infected host or facilitate other toxins' diffusion through the digestion of host collagen. However, our knowledge concerning the collagen degradation mechanism of Vibrio collagenase is still limited. This study reveals the degradation strategy of Vibrio collagenase VP397 on type I collagen. VP397 binds on collagen fibrils via its C-terminal PPC2 domain, and its catalytic module first assaults the C-telopeptide region and then attacks the Y-Gly bonds in the dissociated tropocollagen fragments to release peptides and amino acids. This study offers new knowledge regarding the collagenolytic mechanism of Vibrio collagenase, which is helpful for better understanding the role of collagenase in Vibrio pathogenesis and for developing its industrial and medical applications.
Collapse
|
3
|
Structure of Vibrio collagenase VhaC provides insight into the mechanism of bacterial collagenolysis. Nat Commun 2022; 13:566. [PMID: 35091565 PMCID: PMC8799719 DOI: 10.1038/s41467-022-28264-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
The collagenases of Vibrio species, many of which are pathogens, have been regarded as an important virulence factor. However, there is little information on the structure and collagenolytic mechanism of Vibrio collagenase. Here, we report the crystal structure of the collagenase module (CM) of Vibrio collagenase VhaC and the conformation of VhaC in solution. Structural and biochemical analyses and molecular dynamics studies reveal that triple-helical collagen is initially recognized by the activator domain, followed by subsequent cleavage by the peptidase domain along with the closing movement of CM. This is different from the peptidolytic mode or the proposed collagenolysis of Clostridium collagenase. We propose a model for the integrated collagenolytic mechanism of VhaC, integrating the functions of VhaC accessory domains and its collagen degradation pattern. This study provides insight into the mechanism of bacterial collagenolysis and helps in structure-based drug design targeting of the Vibrio collagenase. The collagenolytic mechanism of Vibrio collagenase, a virulence factor, remains unclear. Here, the authors report the structure of Vibrio collagenase VhaC and propose the mechanism for collagen recognition and degradation, providing new insight into bacterial collagenolysis.
Collapse
|
4
|
Al Haj Baddar N, Timoshevskaya N, Smith JJ, Guo H, Voss SR. Novel Expansion of Matrix Metalloproteases in the Laboratory Axolotl (Ambystoma mexicanum) and Other Salamander Species. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.786263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloprotease (MMP) genes encode endopeptidases that cleave protein components of the extracellular matrix (ECM) as well as non-ECM proteins. Here we report the results of a comprehensive survey of MMPs in the laboratory axolotl and other representative salamanders. Surprisingly, 28 MMPs were identified in salamanders and 9 MMP paralogs were identified as unique to the axolotl and other salamander taxa, with several of these presenting atypical amino acid insertions not observed in other tetrapod vertebrates. Furthermore, as assessed by sequence information, all of the novel salamander MMPs are of the secreted type, rather than cell membrane anchored. This suggests that secreted type MMPs expanded uniquely within salamanders to presumably execute catalytic activities in the extracellular milieu. To facilitate future studies of salamander-specific MMPs, we annotated transcriptional information from published studies of limb and tail regeneration. Our analysis sets the stage for comparative studies to understand why MMPs expanded uniquely within salamanders.
Collapse
|
5
|
|
6
|
Niranjan R, Kishor S, Kumar A. Matrix metalloproteinases in the pathogenesis of dengue viral disease: Involvement of immune system and newer therapeutic strategies. J Med Virol 2021; 93:4629-4637. [PMID: 33634515 DOI: 10.1002/jmv.26903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
Globally, the burden due to dengue infection is increasing with a recent estimate of 96 million progressing to the disease every year. Dengue pathogenesis and the factors influencing it are not completely known. It is now widely speculated that there is an important role of matrix metalloproteinases (MMPs) in the initiation and progression of dengue pathogenesis; however, their exact roles are not fully understood. Overactivation of matrix metalloproteinases may contribute to the severity of dengue pathogenesis. Cytokines and various other mediators of inflammation interact with the vascular endothelium and matrix metalloproteinases may be one of the components among them. Extensive plasma leakage into tissue spaces may result in a shock. It is evident in the literature that MMP2 and MMP9 increase in dengue patients is correlated with the severity of the disease; however, the underlying mechanism is still unknown. Activation of innate cells and adaptive immune cells which include, B and T cells, macrophages or monocytes and dendritic cells also contribute to the dengue pathology. Newer therapeutic strategies include microRNAs, such as miR-134 (targets MMP3 and MMP1) and MicroRNA-320d, (targets MMP/TIMP proteolytic system). The use of antibodies-based therapeutics like (Andecaliximab; anti-matrix metalloproteinase-9 antibody) is also suggested against MMPs in dengue. In this review, we summarize some recent developments associated with the involvement of immune cells and their mediators associated with the matrix metalloproteinases mediated dengue pathogenesis. We highlight that, there is still very little knowledge about the MMPs in dengue pathogenesis which needs attention and extensive investigations.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Immunology Laboratory, ICMR-Vector Control Research Center, Puducherry, India
| | - Sumitha Kishor
- Immunology Laboratory, ICMR-Vector Control Research Center, Puducherry, India
| | - Ashwani Kumar
- Immunology Laboratory, ICMR-Vector Control Research Center, Puducherry, India
| |
Collapse
|
7
|
Ruggiero SM, Pilvankar MR, Ford Versypt AN. Mathematical Modeling of Tuberculosis Granuloma Activation. Processes (Basel) 2017; 5. [PMID: 34993126 PMCID: PMC8730292 DOI: 10.3390/pr5040079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Tuberculosis (TB) is one of the most common infectious diseases worldwide. It is estimated that one-third of the world’s population is infected with TB. Most have the latent stage of the disease that can later transition to active TB disease. TB is spread by aerosol droplets containing Mycobacterium tuberculosis (Mtb). Mtb bacteria enter through the respiratory system and are attacked by the immune system in the lungs. The bacteria are clustered and contained by macrophages into cellular aggregates called granulomas. These granulomas can hold the bacteria dormant for long periods of time in latent TB. The bacteria can be perturbed from latency to active TB disease in a process called granuloma activation when the granulomas are compromised by other immune response events in a host, such as HIV, cancer, or aging. Dysregulation of matrix metalloproteinase 1 (MMP-1) has been recently implicated in granuloma activation through experimental studies, but the mechanism is not well understood. Animal and human studies currently cannot probe the dynamics of activation, so a computational model is developed to fill this gap. This dynamic mathematical model focuses specifically on the latent to active transition after the initial immune response has successfully formed a granuloma. Bacterial leakage from latent granulomas is successfully simulated in response to the MMP-1 dynamics under several scenarios for granuloma activation.
Collapse
Affiliation(s)
- Steve M. Ruggiero
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Minu R. Pilvankar
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ashlee N. Ford Versypt
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA
- Correspondence:
| |
Collapse
|
8
|
Karabencheva-Christova TG, Christov CZ, Fields GB. Conformational Dynamics of Matrix Metalloproteinase-1·Triple-Helical Peptide Complexes. J Phys Chem B 2017; 122:5316-5326. [DOI: 10.1021/acs.jpcb.7b09771] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tatyana G. Karabencheva-Christova
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Christo Z. Christov
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Gregg B. Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
- Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, Florida 33458, United States
| |
Collapse
|
9
|
Amar S, Smith L, Fields GB. Matrix metalloproteinase collagenolysis in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2017; 1864:1940-1951. [PMID: 28456643 PMCID: PMC5605394 DOI: 10.1016/j.bbamcr.2017.04.015] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 01/08/2023]
Abstract
The proteolytic processing of collagen (collagenolysis) is critical in development and homeostasis, but also contributes to numerous pathologies. Mammalian interstitial collagenolytic enzymes include members of the matrix metalloproteinase (MMP) family and cathepsin K. While MMPs have long been recognized for their ability to catalyze the hydrolysis of collagen, the roles of individual MMPs in physiological and pathological collagenolysis are less defined. The use of knockout and mutant animal models, which reflect human diseases, has revealed distinct collagenolytic roles for MT1-MMP and MMP-13. A better understanding of temporal and spatial collagen processing, along with the knowledge of the specific MMP involved, will ultimately lead to more effective treatments for cancer, arthritis, cardiovascular conditions, and infectious diseases. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Sabrina Amar
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Lyndsay Smith
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
10
|
Kantor AM, Dong S, Held NL, Ishimwe E, Passarelli AL, Clem RJ, Franz AW. Identification and initial characterization of matrix metalloproteinases in the yellow fever mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2017; 26:113-126. [PMID: 28054419 PMCID: PMC5216420 DOI: 10.1111/imb.12275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Aedes aegypti is a major vector for arboviruses such as dengue, chikungunya and Zika viruses. During acquisition of a viremic bloodmeal, an arbovirus infects mosquito midgut cells before disseminating to secondary tissues, including the salivary glands. Once virus is released into the salivary ducts it can be transmitted to another vertebrate host. The midgut is surrounded by a basal lamina (BL) in the extracellular matrix, consisting of a proteinaceous mesh composed of collagen IV and laminin. BL pore size exclusion limit prevents virions from passing through. Thus, the BL probably requires remodelling via enzymatic activity to enable efficient virus dissemination. Matrix metalloproteinases (MMPs) are extracellular endopeptidases that are involved in remodelling of the extracellular matrix. Here, we describe and characterize the nine Ae. aegypti encoded MMPs, AeMMPs 1-9, which share common features with other invertebrate and vertebrate MMPs. Expression profiling in Ae. aegypti revealed that Aemmp4 and Aemmp6 were upregulated during metamorphosis, whereas expression of Aemmp1 and Aemmp2 increased during bloodmeal digestion. Aemmp1 expression was also upregulated in the presence of a bloodmeal containing chikungunya virus. Using polyclonal antibodies, AeMMP1 and AeMMP2 were specifically detected in tissues associated with the mosquito midgut.
Collapse
Affiliation(s)
- Asher M. Kantor
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Shengzhang Dong
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Nicole L. Held
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Egide Ishimwe
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - A. Lorena Passarelli
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Rollie J. Clem
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Alexander W.E. Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
11
|
Azhagiya Singam ER, Rajapandian V, Subramanian V. Molecular dynamics simulation study on the interaction of collagen-like peptides with gelatinase-A (MMP-2). Biopolymers 2016; 101:779-94. [PMID: 24374600 DOI: 10.1002/bip.22457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/21/2013] [Accepted: 12/21/2013] [Indexed: 12/19/2022]
Abstract
Although several models have been proposed for the interaction of collagen with gelatinase-A (matrix metalloproteinases-2 (MMP-2)), the extensive role of each domain of gelatinase A in hydrolyzing the collagens with and without interruptions is still elusive. Molecular docking, molecular dynamics (MD) simulation, normal mode analysis (NMA) and framework rigidity optimized dynamics algorithm (FRODAN) based analysis were carried out to understand the function of various domains of MMP-2 upon interaction with collagen like peptides. The results reveal that the collagen binding domain (CBD) binds to the C-terminal of collagen like peptide with interruption. CBD helps in unwinding the loosely packed interrupted region of triple helical structure to a greater extent. It can be possible to speculate that the role of hemopexin (HPX) domain is to prevent further unwinding of collagen like peptide by binding to the other end of the collagen like peptide. The catalytic (CAT) domain then reorients itself to interact with the part of the unwound region of collagen like peptide for further hydrolysis. In conclusion the CBD of MMP-2 recognizes the collagen and aids in unwinding the collagen like peptide with interruptions, and the HPX domain of MMP-2 binds to the other end of the collagen allowing CAT domain to access the cleavage site. This study provides a comprehensive understanding of the structural basis of collagenolysis by MMP-2.
Collapse
Affiliation(s)
- E R Azhagiya Singam
- Chemical Laboratory, Council of Scientific and Industrial Research, Central Leather Research Institute, Adyar, Chennai, 600 020, Tamil Nadu, India
| | | | | |
Collapse
|
12
|
Matrix metalloproteinases: new directions toward inhibition in the fight against cancers. Future Med Chem 2016; 8:297-309. [PMID: 26910530 DOI: 10.4155/fmc.15.184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Matrix metalloproteinases are zinc-dependent enzymes whose main function is to cleave the components of the extracellular matrix. Their overexpression is evident in all cancers but to date there is no satisfactory way to inhibit their actions. Here, we look at their types, their structures, their functions and the developing understanding we have of them in the search for ways to drug them and inhibit their actions selectively. We investigate their subtle but exploitable differences in order that we can develop drugs to target them and even to target specific substrates and functions that they carry out. To date there are no new matrix metalloproteinase inhibitors developed to treat cancer, but we are progressing in our understanding of them, which is leading us ever closer to our goal.
Collapse
|
13
|
Singh W, Fields GB, Christov CZ, Karabencheva-Christova TG. Importance of the Linker Region in Matrix Metalloproteinase-1 Domain Interactions. RSC Adv 2016; 6:23223-23232. [PMID: 26998255 DOI: 10.1039/c6ra03033e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Collagenolysis is catalyzed by enzymes from the matrix metalloproteinase (MMP) family, where one of the most studied is MMP-1. The X-ray crystallographic structure of MMP-1 complexed with a collagen-model triple-helical peptide (THP) provided important atomistic information, but few details on the effects of the conformational flexibility on catalysis. In addition, the role of the linker region between the catalytic (CAT) and hemopexin-like (HPX) domains was not defined. In order to reveal the dynamics and correlations of MMP-1 comprehensive atomistic molecular dynamics simulations of an MMP-1•THP complex was performed. To examine the role of the linker region for MMP-1 function simulations with linker regions from MT1-MMP/MMP-14 and MMP-13 replacing the MMP-1 linker region were performed. The MD studies were in good agreement with the experimental observation that in the MMP-1•THP X-ray crystallographic structure MMP-1 is in a "closed" conformation. MD revealed that the interactions of the THP with the both the CAT and HPX domains of MMP-1 are dynamic in nature, and the linker region of MMP-1 influences the interactions and dynamics of both the CAT and HPX domains and collagen binding to MMP-1.
Collapse
Affiliation(s)
- Warispreet Singh
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL 33458, USA
| | - Christo Z Christov
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom
| | - Tatyana G Karabencheva-Christova
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom
| |
Collapse
|
14
|
Abstract
Bacterial collagenases are metalloproteinases involved in the degradation of the extracellular matrices of animal cells, due to their ability to digest native collagen. These enzymes are important virulence factors in a variety of pathogenic bacteria. Nonetheless, there is a lack of scientific consensus for a proper and well-defined classification of these enzymes and a vast controversy regarding the correct identification of collagenases. Clostridial collagenases were the first ones to be identified and characterized and are the reference enzymes for comparison of newly discovered collagenolytic enzymes. In this review we present the most recent data regarding bacterial collagenases and overview the functional and structural diversity of bacterial collagenases. An overall picture of the molecular diversity and distribution of these proteins in nature will also be given. Particular aspects of the different proteolytic activities will be contextualized within relevant areas of application, mainly biotechnological processes and therapeutic uses. At last, we will present a new classification guide for bacterial collagenases that will allow the correct and straightforward classification of these enzymes.
Collapse
Affiliation(s)
- Ana Sofia Duarte
- a Department of Biology and Cesam , University of Aveiro, Campus Universitario de Santiago , Aveiro , Portugal
| | - Antonio Correia
- a Department of Biology and Cesam , University of Aveiro, Campus Universitario de Santiago , Aveiro , Portugal
| | - Ana Cristina Esteves
- a Department of Biology and Cesam , University of Aveiro, Campus Universitario de Santiago , Aveiro , Portugal
| |
Collapse
|
15
|
Cerofolini L, Fields GB, Fragai M, Geraldes CFGC, Luchinat C, Parigi G, Ravera E, Svergun DI, Teixeira JMC. Examination of matrix metalloproteinase-1 in solution: a preference for the pre-collagenolysis state. J Biol Chem 2013; 288:30659-30671. [PMID: 24025334 DOI: 10.1074/jbc.m113.477240] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Catalysis of collagen degradation by matrix metalloproteinase 1 (MMP-1) has been proposed to critically rely on flexibility between the catalytic (CAT) and hemopexin-like (HPX) domains. A rigorous assessment of the most readily accessed conformations in solution is required to explain the onset of substrate recognition and collagenolysis. The present study utilized paramagnetic NMR spectroscopy and small angle x-ray scattering (SAXS) to calculate the maximum occurrence (MO) of MMP-1 conformations. The MMP-1 conformations with large MO values (up to 47%) are restricted into a relatively small conformational region. All conformations with high MO values differ largely from the closed MMP-1 structures obtained by x-ray crystallography. The MO of the latter is ~20%, which represents the upper limit for the presence of this conformation in the ensemble sampled by the protein in solution. In all the high MO conformations, the CAT and HPX domains are not in tight contact, and the residues of the HPX domain reported to be responsible for the binding to the collagen triple-helix are solvent exposed. Thus, overall analysis of the highest MO conformations indicated that MMP-1 in solution was poised to interact with collagen and then could readily proceed along the steps of collagenolysis.
Collapse
Affiliation(s)
| | - Gregg B Fields
- the Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987,.
| | - Marco Fragai
- From the CERM and; the Department of Chemistry "U. Schiff," University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Carlos F G C Geraldes
- the Center for Neuroscience and Cell Biology and; the Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, P.O. Box 3046, 3001-401 Coimbra, Portugal, and
| | - Claudio Luchinat
- From the CERM and; the Department of Chemistry "U. Schiff," University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (FI), Italy,.
| | - Giacomo Parigi
- From the CERM and; the Department of Chemistry "U. Schiff," University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Enrico Ravera
- From the CERM and; the Department of Chemistry "U. Schiff," University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Dmitri I Svergun
- the EMBL, c/o DESY, Notkestrasse 85, Geb. 25 A, 22603 Hamburg, Germany
| | - João M C Teixeira
- From the CERM and; the Center for Neuroscience and Cell Biology and; the Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, P.O. Box 3046, 3001-401 Coimbra, Portugal, and
| |
Collapse
|
16
|
Abstract
Interstitial collagen mechanical and biological properties are altered by proteases that catalyze the hydrolysis of the collagen triple-helical structure. Collagenolysis is critical in development and homeostasis but also contributes to numerous pathologies. Mammalian collagenolytic enzymes include matrix metalloproteinases, cathepsin K, and neutrophil elastase, and a variety of invertebrates and pathogens possess collagenolytic enzymes. Components of the mechanism of action for the collagenolytic enzyme MMP-1 have been defined experimentally, and insights into other collagenolytic mechanisms have been provided. Ancillary biomolecules may modulate the action of collagenolytic enzymes.
Collapse
Affiliation(s)
- Gregg B Fields
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA.
| |
Collapse
|
17
|
Mutant firefly luciferases with improved specific activity and dATP discrimination constructed by yeast cell surface engineering. Appl Microbiol Biotechnol 2012; 97:4003-11. [PMID: 23149753 DOI: 10.1007/s00253-012-4467-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/18/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
Abstract
Pyrosequencing system utilizing luciferase is one of the next-generation DNA sequencing systems. However, there is a crucial problem with the current pyrosequencing system: luciferase cannot discriminate between ATP and dATP completely, and dATPαS must be used as the dATP analogue. dATPαS is expensive and has low activity for the enzyme. If luciferase can clearly recognize the difference between ATP and dATP, dATP could be used instead of the expensive dATPαS in the pyrosequencing system. We attempted to prepare a novel luciferase with improved specific activity and dATP discrimination with the molecular display method. First, we selected two amino acid residues, Ser440 and Ser456, as target residues for mutation from the whole sequence of Photinus pyralis luciferase; we comprehensively mutated these two amino acids. A mutant luciferase library was constructed using yeast cell surface engineering. Through three step-wide screenings with individual conditions, we easily and speedily isolated three candidate mutants from 1,152 candidates and analyzed the properties of these mutants. Consequently, we succeeded in obtaining interesting mutant luciferases with improved specific activity and dATP discrimination more conveniently than with other methods.
Collapse
|