• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4609573)   Today's Articles (109)   Subscriber (49378)
For: Ertem MZ, Cramer CJ, Himo F, Siegbahn PEM. N–O bond cleavage mechanism(s) in nitrous oxide reductase. J Biol Inorg Chem 2012;17:687-98. [DOI: 10.1007/s00775-012-0888-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/29/2012] [Indexed: 11/24/2022]
Number Cited by Other Article(s)
1
Rathnayaka SC, Mankad NP. Coordination chemistry of the CuZ site in nitrous oxide reductase and its synthetic mimics. Coord Chem Rev 2021;429:213718. [PMID: 33692589 PMCID: PMC7939133 DOI: 10.1016/j.ccr.2020.213718] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
2
Jiang H, Lai W. Monophenolase and catecholase activity of Aspergillus oryzae catechol oxidase: insights from hybrid QM/MM calculations. Org Biomol Chem 2020;18:5192-5202. [PMID: 32589184 DOI: 10.1039/d0ob00969e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
3
Ferousi C, Majer SH, DiMucci IM, Lancaster KM. Biological and Bioinspired Inorganic N-N Bond-Forming Reactions. Chem Rev 2020;120:5252-5307. [PMID: 32108471 PMCID: PMC7339862 DOI: 10.1021/acs.chemrev.9b00629] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
4
Wu P, Fan F, Song J, Peng W, Liu J, Li C, Cao Z, Wang B. Theory Demonstrated a "Coupled" Mechanism for O2 Activation and Substrate Hydroxylation by Binuclear Copper Monooxygenases. J Am Chem Soc 2019;141:19776-19789. [PMID: 31746191 DOI: 10.1021/jacs.9b09172] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
5
Pauleta SR, Carepo MS, Moura I. Source and reduction of nitrous oxide. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
6
Fukuda R, Sakai S, Takagi N, Matsui M, Ehara M, Hosokawa S, Tanaka T, Sakaki S. Mechanism of NO–CO reaction over highly dispersed cuprous oxide on γ-alumina catalyst using a metal–support interfacial site in the presence of oxygen: similarities to and differences from biological systems. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00080h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
7
The catalytic cycle of nitrous oxide reductase - The enzyme that catalyzes the last step of denitrification. J Inorg Biochem 2017;177:423-434. [PMID: 28927704 DOI: 10.1016/j.jinorgbio.2017.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/02/2017] [Accepted: 09/08/2017] [Indexed: 01/27/2023]
8
Johnston EM, Carreira C, Dell'Acqua S, Dey SG, Pauleta SR, Moura I, Solomon EI. Spectroscopic Definition of the CuZ° Intermediate in Turnover of Nitrous Oxide Reductase and Molecular Insight into the Catalytic Mechanism. J Am Chem Soc 2017;139:4462-4476. [PMID: 28228011 DOI: 10.1021/jacs.6b13225] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
9
Eady RR, Antonyuk SV, Hasnain SS. Fresh insight to functioning of selected enzymes of the nitrogen cycle. Curr Opin Chem Biol 2016;31:103-12. [DOI: 10.1016/j.cbpa.2016.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/18/2016] [Indexed: 11/26/2022]
10
Zhang HM, Chen SL. Include Dispersion in Quantum Chemical Modeling of Enzymatic Reactions: The Case of Isoaspartyl Dipeptidase. J Chem Theory Comput 2015;11:2525-35. [DOI: 10.1021/acs.jctc.5b00246] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
11
Xie H, Liu C, Chen X, Lei Q, Fang W, Zhou T. Theoretically exploring the key role of the Lys412 residue in the conversion of N2O to N2by nitrous oxide reductase from Achromobacter cycloclastes. NEW J CHEM 2015. [DOI: 10.1039/c5nj01339a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
12
Marenich AV, Ho J, Coote ML, Cramer CJ, Truhlar DG. Computational electrochemistry: prediction of liquid-phase reduction potentials. Phys Chem Chem Phys 2014;16:15068-106. [PMID: 24958074 DOI: 10.1039/c4cp01572j] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
13
Alderson RG, De Ferrari L, Mavridis L, McDonagh JL, Mitchell JBO, Nath N. Enzyme informatics. Curr Top Med Chem 2014;12:1911-23. [PMID: 23116471 DOI: 10.2174/156802612804547353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/12/2012] [Accepted: 09/15/2012] [Indexed: 12/18/2022]
14
Tsai ML, Hadt RG, Vanelderen P, Sels BF, Schoonheydt RA, Solomon EI. [Cu2O]2+ active site formation in Cu-ZSM-5: geometric and electronic structure requirements for N2O activation. J Am Chem Soc 2014;136:3522-9. [PMID: 24524659 DOI: 10.1021/ja4113808] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
15
Blomberg MRA, Borowski T, Himo F, Liao RZ, Siegbahn PEM. Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 2014;114:3601-58. [PMID: 24410477 DOI: 10.1021/cr400388t] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
16
Ribeiro AJM, Alberto ME, Ramos MJ, Fernandes PA, Russo N. The Catalytic Mechanism of Protein Phosphatase 5 Established by DFT Calculations. Chemistry 2013;19:14081-9. [DOI: 10.1002/chem.201301565] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Indexed: 11/07/2022]
17
Sheng X, Gao J, Liu Y, Liu C. Theoretical study on the proton shuttle mechanism of saccharopine dehydrogenase. J Mol Graph Model 2013;44:17-25. [DOI: 10.1016/j.jmgm.2013.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 11/16/2022]
18
Akyüz MA, Erdem SS. Computational modeling of the direct hydride transfer mechanism for the MAO catalyzed oxidation of phenethylamine and benzylamine: ONIOM (QM/QM) calculations. J Neural Transm (Vienna) 2013;120:937-45. [PMID: 23619993 DOI: 10.1007/s00702-013-1027-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/15/2013] [Indexed: 11/28/2022]
19
Quantum-chemical approach to determining the high potency of clorgyline as an irreversible acetylenic monoamine oxidase inhibitor. J Neural Transm (Vienna) 2013;120:875-82. [DOI: 10.1007/s00702-013-1016-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/23/2013] [Indexed: 01/18/2023]
20
Lind MES, Himo F. Quantum chemistry as a tool in asymmetric biocatalysis: limonene epoxide hydrolase test case. Angew Chem Int Ed Engl 2013;52:4563-7. [PMID: 23512539 PMCID: PMC3734700 DOI: 10.1002/anie.201300594] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Indexed: 12/24/2022]
21
Lind MES, Himo F. Quantum Chemistry as a Tool in Asymmetric Biocatalysis: Limonene Epoxide Hydrolase Test Case. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300594] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
22
Vianello R, Repič M, Mavri J. How are Biogenic Amines Metabolized by Monoamine Oxidases? European J Org Chem 2012. [DOI: 10.1002/ejoc.201201122] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA