1
|
Shao Z, Wu G, Tang Y, Hou P, Wu Z, Dai G, Yang L, Zhou Y, Li J. Aptamer-Gadolinium Conjugates for Targeted Magnetic Resonance Imaging of Early-Stage Bladder Cancer. Anal Chem 2024; 96:19378-19386. [PMID: 39584555 DOI: 10.1021/acs.analchem.4c03659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Bladder cancer (BCa) poses a significant threat to human health, with early-stage diagnosis being particularly valuable yet challenging due to the limited availability of highly efficient targeted contrast agents. In this study, we have developed a novel aptamer-gadolinium conjugate (Apt-Gd) designed as a targeted contrast agent for the magnetic resonance imaging (MRI) of early-stage BCa. The synthesis of Apt-Gd involved the direct conjugation of aptamers with chelating agents through a bioorthogonal reaction, followed by gadolinium chelation. Notably, Apt-Gd exhibited high longitudinal relaxivity, exceptional BCa specificity, and good biocompatibility. Furthermore, our research revealed that intravesical instillation of Apt-Gd effectively enhanced the stability of aptamers and boosted the local contrast enhancement in BCa-bearing mice. The utilization of Apt-Gd yielded a satisfactory signal-to-noise ratio during BCa imaging and significantly prolonged the imaging time window. On the whole, the accurate detection of early-stage BCa using Apt-Gd was achieved for the first time, making a breakthrough in BCa diagnosis with promising potential for practical clinical applications.
Collapse
Affiliation(s)
- Zhentao Shao
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Guangyu Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road, Shanghai 200127, China
| | - Yiyuan Tang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Peidong Hou
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Zhixiang Wu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Gaiguo Dai
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Litao Yang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road, Shanghai 200127, China
| | - Juan Li
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
2
|
Koudrina A, McConnell EM, Zurakowski JA, Cron GO, Chen S, Tsai EC, DeRosa MC. Exploring the Unique Contrast Properties of Aptamer-Gadolinium Conjugates in Magnetic Resonance Imaging for Targeted Imaging of Thrombi. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9412-9424. [PMID: 33395250 DOI: 10.1021/acsami.0c16666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Objective: An important clinical question in the determination of the extent of thrombosis-related vascular conditions is the identification of blood clot location. Fibrin is a major molecular constituent of blood clots and can, therefore, be utilized in molecular imaging. In this proof-of-concept study, we sought to prepare a fibrin-targeting magnetic resonance imaging contrast agent, using a Gd(III)-loaded fibrinogen aptamer (FA) chelate conjugate (Gd(III)-NOTA-FA) (NOTA = 1,4,7-triazacyclononane-1,4,7-triacetic acid), to endow the ability to specifically accumulate at the location of blood clots, thereby enhancing contrast capabilities. Methods: The binding affinity of FA for fibrin was confirmed by fluorescence microscopy and microscale thermophoresis. The preparation and effective loading of the chelate-aptamer conjugates were confirmed by mass spectrometry and a xylenol orange colorimetric test. Longitudinal and transverse relaxivities and the effects of target binding were assessed using T1- and T2-map sequences at 7 T. T1- and T2-weighted images were acquired after blood clots were treated with Gd(III)-NOTA-FA. Collagen was used as the protein control, while an unrelated aptamer sequence, FB139, was used as the aptamer control. Results: FA demonstrated a high affinity and selectivity toward the polymeric protein, with a Kd of 16.6 nM, confirming an avidity over fibrinogen. The longitudinal (r1) and transverse (r2) relaxivities of Gd(III)-NOTA-FA demonstrated that conjugation to the long aptamer strand shortened T1 relaxation times and increased T2 relaxation times (3.04 and 38.7 mM-1 s-1, respectively). These effects were amplified by binding to the fibrin target (1.73 and 46.5 mM-1 s-1, respectively). In vitro studies with thrombin-polymerized human blood (clots) in whole blood showed an unexpected enhancement of signal intensity (hyperintense) produced exclusively at the location of the clot during the T2-weighted scan, while the presence of fibrinogen within a whole blood pool resulted in T1 signal intensity enhancement throughout the pool. This is advantageous, as simply reversing the type of a scan from a typical T1-weighted to a T2-weighted would allow to selectively highlight the location of blood clots. Conclusions: Gd(III)-NOTA-FA can be used for molecular imaging of thrombi, through fibrin-targeted delivery of contrast to the location of blood clots in T2-weighted scans.
Collapse
Affiliation(s)
- Anna Koudrina
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Erin M McConnell
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada
| | - Joseph A Zurakowski
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Greg O Cron
- The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Department of Radiology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Suzan Chen
- The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Eve C Tsai
- The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
3
|
Advancements in Canadian Biomaterials Research in Neurotraumatic Diagnosis and Therapies. Processes (Basel) 2019. [DOI: 10.3390/pr7060336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Development of biomaterials for the diagnosis and treatment of neurotraumatic ailments has been significantly advanced with our deepened knowledge of the pathophysiology of neurotrauma. Canadian research in the fields of biomaterial-based contrast agents, non-invasive axonal tracing, non-invasive scaffold imaging, scaffold patterning, 3D printed scaffolds, and drug delivery are conquering barriers to patient diagnosis and treatment for traumatic injuries to the nervous system. This review highlights some of the highly interdisciplinary Canadian research in biomaterials with a focus on neurotrauma applications.
Collapse
|
4
|
Khantasup K, Saiviroonporn P, Jarussophon S, Chantima W, Dharakul T. Anti-EpCAM scFv gadolinium chelate: a novel targeted MRI contrast agent for imaging of colorectal cancer. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 31:633-644. [DOI: 10.1007/s10334-018-0687-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/29/2018] [Accepted: 04/25/2018] [Indexed: 11/29/2022]
|
5
|
Paramagnetic Quantum Dots as Multimodal Probes for Potential Applications in Nervous System Imaging. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0766-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Röthlisberger P, Gasse C, Hollenstein M. Nucleic Acid Aptamers: Emerging Applications in Medical Imaging, Nanotechnology, Neurosciences, and Drug Delivery. Int J Mol Sci 2017; 18:E2430. [PMID: 29144411 PMCID: PMC5713398 DOI: 10.3390/ijms18112430] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/25/2022] Open
Abstract
Recent progresses in organic chemistry and molecular biology have allowed the emergence of numerous new applications of nucleic acids that markedly deviate from their natural functions. Particularly, DNA and RNA molecules-coined aptamers-can be brought to bind to specific targets with high affinity and selectivity. While aptamers are mainly applied as biosensors, diagnostic agents, tools in proteomics and biotechnology, and as targeted therapeutics, these chemical antibodies slowly begin to be used in other fields. Herein, we review recent progress on the use of aptamers in the construction of smart DNA origami objects and MRI and PET imaging agents. We also describe advances in the use of aptamers in the field of neurosciences (with a particular emphasis on the treatment of neurodegenerative diseases) and as drug delivery systems. Lastly, the use of chemical modifications, modified nucleoside triphosphate particularly, to enhance the binding and stability of aptamers is highlighted.
Collapse
Affiliation(s)
- Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| | - Cécile Gasse
- Institute of Systems & Synthetic Biology, Xenome Team, 5 rue Henri Desbruères Genopole Campus 1, University of Evry, F-91030 Evry, France.
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| |
Collapse
|
7
|
Giovenzana GB, Lattuada L, Negri R. Recent Advances in Bifunctional Paramagnetic Chelates for MRI. Isr J Chem 2017. [DOI: 10.1002/ijch.201700028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Giovanni B. Giovenzana
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale “A. Avogadro”; L.go Donegani 2/3 I-28100 Novara Italy
| | - Luciano Lattuada
- Bracco Imaging SpA, Bracco Research Centre; Via Ribes 5 I-10010 Colleretto Giacosa TO, Italy
| | - Roberto Negri
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale “A. Avogadro”; L.go Donegani 2/3 I-28100 Novara Italy
| |
Collapse
|
8
|
Fluorescent single-stranded DNA-based assay for detecting unchelated Gadolinium(III) ions in aqueous solution. Anal Bioanal Chem 2016; 408:4121-31. [PMID: 27071762 DOI: 10.1007/s00216-016-9503-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
Abstract
The main concern pertaining to the safety of Gadolinium(III)-based contrast agents (GBCAs) is the toxicity caused by the unchelated ion, which may be inadvertently present in the solution due most commonly to excess unreacted starting material or dissociation of the complexes. Detecting the aqueous free ion during the synthesis and preparation of GBCA solutions is therefore instrumental in ensuring the safety of the agents. This paper reports the development of a sensitive fluorogenic sensor for aqueous unchelated Gadolinium(III) (Gd(III)). Our design utilizes single-stranded oligodeoxynucleotides with a specific sequence of 44 bases as the targeting moiety. The fluorescence-based assay may be run at ambient pH with very small amounts of samples in 384-well plates. The sensor is able to detect nanomolar concentration of Gd(III), and is relatively unresponsive toward a range of biologically relevant ions and the chelated Gd(III). Although some cross-reactivity with other trivalent lanthanide ions, such as Europium(III) and Terbium(III), is observed, these are not commonly found in biological systems and contrast agents. This convenient and rapid method may be useful in ascertaining a high purity of GBCA solutions. Graphical abstract Fluorescent aptamer-based assay for detecting unchelated Ln(III) ions in aqueous solution.
Collapse
|
9
|
Dougherty CA, Cai W, Hong H. Applications of aptamers in targeted imaging: state of the art. Curr Top Med Chem 2016; 15:1138-52. [PMID: 25866268 DOI: 10.2174/1568026615666150413153400] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 01/23/2023]
Abstract
Aptamers are single-stranded oligonucleotides with high affinity and specificity to the target molecules or cells, thus they can serve as an important category of molecular targeting ligand. Since their discovery, aptamers have been rapidly translated into clinical practice. The strong target affinity/selectivity, cost-effectivity, chemical versatility and safety of aptamers are superior to traditional peptides- or proteins-based ligands which make them unique choices for molecular imaging. Therefore, aptamers are considered to be extremely useful to guide various imaging contrast agents to the target tissues or cells for optical, magnetic resonance, nuclear, computed tomography, ultrasound and multimodality imaging. This review aims to provide an overview of aptamers' advantages as targeting ligands and their application in targeted imaging. Further research in synthesis of new types of aptamers and their conjugation with new categories of contrast agents is required to develop clinically translatable aptamer-based imaging agents which will eventually result in improved patient care.
Collapse
Affiliation(s)
| | - Weibo Cai
- Department of Radiology, University of Wisconsin - Madison, Wisconsin 53705-2275, United States.
| | | |
Collapse
|
10
|
Nucleic Acid Aptamers: An Emerging Tool for Biotechnology and Biomedical Sensing. SENSORS 2015; 15:16281-313. [PMID: 26153774 PMCID: PMC4541879 DOI: 10.3390/s150716281] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023]
Abstract
Detection of small molecules or proteins of living cells provides an exceptional opportunity to study genetic variations and functions, cellular behaviors, and various diseases including cancer and microbial infections. Our aim in this review is to give an overview of selected research activities related to nucleic acid-based aptamer techniques that have been reported in the past two decades. Limitations of aptamers and possible approaches to overcome these limitations are also discussed.
Collapse
|
11
|
Bennett KM, Jo JI, Cabral H, Bakalova R, Aoki I. MR imaging techniques for nano-pathophysiology and theranostics. Adv Drug Deliv Rev 2014; 74:75-94. [PMID: 24787226 DOI: 10.1016/j.addr.2014.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 03/02/2014] [Accepted: 04/20/2014] [Indexed: 11/25/2022]
Abstract
The advent of nanoparticle DDSs (drug delivery systems, nano-DDSs) is opening new pathways to understanding physiology and pathophysiology at the nanometer scale. A nano-DDS can be used to deliver higher local concentrations of drugs to a target region and magnify therapeutic effects. However, interstitial cells or fibrosis in intractable tumors, as occurs in pancreatic or scirrhous stomach cancer, tend to impede nanoparticle delivery. Thus, it is critical to optimize the type and size of nanoparticles to reach the target. High-resolution 3D imaging provides a means of "seeing" the nanoparticle distribution and therapeutic effects. We introduce the concept of "nano-pathophysiological imaging" as a strategy for theranostics. The strategy consists of selecting an appropriate nano-DDS and rapidly evaluating drug effects in vivo to guide the next round of therapy. In this article we classify nano-DDSs by component carrier materials and present an overview of the significance of nano-pathophysiological MRI.
Collapse
|