1
|
Quintanar L, Millhauser GL. EPR of copper centers in the prion protein. Methods Enzymol 2022; 666:297-314. [PMID: 35465923 PMCID: PMC9870711 DOI: 10.1016/bs.mie.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Most proteins implicated in neurodegenerative diseases bind metal ions, notably copper and zinc. Metal ion binding may be part of the protein's function or, alternatively, may promote a deleterious gain of function. With regard to Cu2+ ions, electron paramagnetic resonance techniques have proven to be instrumental in determining the biophysical characteristics of the copper binding sites, as well as structural features of the coordinating protein and how they are impacted by metal binding. Here, the most useful methods are described as they apply to the prion protein, which serves as a model for the broader spectrum of neurodegenerative proteins.
Collapse
Affiliation(s)
- Liliana Quintanar
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico,Corresponding authors: ;
| | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, UC Santa Cruz, Santa Cruz, CA, United States,Corresponding authors: ;
| |
Collapse
|
2
|
M Passos Y, J do Amaral M, C Ferreira N, Macedo B, Chaves JAP, E de Oliveira V, P B Gomes M, L Silva J, Cordeiro Y. The interplay between a GC-rich oligonucleotide and copper ions on prion protein conformational and phase transitions. Int J Biol Macromol 2021; 173:34-43. [PMID: 33476618 DOI: 10.1016/j.ijbiomac.2021.01.097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 01/28/2023]
Abstract
The prion protein (PrP) misfolding to its infectious form is critical to the development of prion diseases, whereby various ligands are suggested to participate, such as copper and nucleic acids (NA). The PrP globular domain was shown to undergo NA-driven liquid-liquid phase separation (LLPS); this latter may precede pathological aggregation. Since Cu(II) is a physiological ligand of PrP, we argue whether it modulates phase separation altogether with nucleic acids. Using recombinant PrP, we investigate the effects of Cu(II) (at 6 M equivalents) and a previously described PrP-binding GC-rich DNA (equimolarly to protein) on PrP conformation, oligomerization, and phase transitions using a range of biophysical techniques. Raman spectroscopy data reveals the formation of the ternary complex. Microscopy suggests that phase separation is mainly driven by DNA, whereas Cu(II) has no influence. Our results show that DNA can be an adjuvant, leading to the structural conversion of PrP, even in the presence of an endogenous ligand, copper. These results provide new insights into the role of Cu(II) and NA on the phase separation, structural conversion, and aggregation of PrP, which are critical events leading to neurodegeneration.
Collapse
Affiliation(s)
- Yulli M Passos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Mariana J do Amaral
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Natalia C Ferreira
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil; Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, MT, USA
| | - Bruno Macedo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Juliana A P Chaves
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Vanessa E de Oliveira
- Departamento de Ciências da Natureza, Universidade Federal Fluminense, Rio das Ostras 28890-000, RJ, Brazil
| | - Mariana P B Gomes
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Jerson L Silva
- Instituto de Bioquímica Médica, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil.
| |
Collapse
|
3
|
Alsiary RA, Alghrably M, Saoudi A, Al-Ghamdi S, Jaremko L, Jaremko M, Emwas AH. Using NMR spectroscopy to investigate the role played by copper in prion diseases. Neurol Sci 2020; 41:2389-2406. [PMID: 32328835 PMCID: PMC7419355 DOI: 10.1007/s10072-020-04321-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/29/2020] [Indexed: 12/31/2022]
Abstract
Prion diseases are a group of rare neurodegenerative disorders that develop as a result of the conformational conversion of normal prion protein (PrPC) to the disease-associated isoform (PrPSc). The mechanism that actually causes disease remains unclear. However, the mechanism underlying the conformational transformation of prion protein is partially understood-in particular, there is strong evidence that copper ions play a significant functional role in prion proteins and in their conformational conversion. Various models of the interaction of copper ions with prion proteins have been proposed for the Cu (II)-binding, cell-surface glycoprotein known as prion protein (PrP). Changes in the concentration of copper ions in the brain have been associated with prion diseases and there is strong evidence that copper plays a significant functional role in the conformational conversion of PrP. Nevertheless, because copper ions have been shown to have both a positive and negative effect on prion disease onset, the role played by Cu (II) ions in these diseases remains a topic of debate. Because of the unique properties of paramagnetic Cu (II) ions in the magnetic field, their interactions with PrP can be tracked even at single atom resolution using nuclear magnetic resonance (NMR) spectroscopy. Various NMR approaches have been utilized to study the kinetic, thermodynamic, and structural properties of Cu (II)-PrP interactions. Here, we highlight the different models of copper interactions with PrP with particular focus on studies that use NMR spectroscopy to investigate the role played by copper ions in prion diseases.
Collapse
Affiliation(s)
- Rawiah A. Alsiary
- King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Mawadda Alghrably
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdelhamid Saoudi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Suliman Al-Ghamdi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Lukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdul-Hamid Emwas
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Pradhan P, Srivastava A, Singh J, Biswas B, Saini A, Siddique I, Kumari P, Khan MA, Mishra A, Yadav PK, Kumar S, Bhavesh NS, Venkatraman P, Vivekanandan P, Kundu B. Prion protein transcription is auto-regulated through dynamic interactions with G-quadruplex motifs in its own promoter. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194479. [PMID: 31931179 DOI: 10.1016/j.bbagrm.2019.194479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 11/19/2022]
Abstract
Cellular prion protein (PrP) misfolds into an aberrant and infectious scrapie form (PrPSc) that lead to fatal transmissible spongiform encephalopathies (TSEs). Association of prions with G-quadruplex (GQ) forming nucleic acid motifs has been reported, but implications of these interactions remain elusive. Herein, we show that the promoter region of the human prion gene (PRNP) contains two putative GQ motifs (Q1 and Q2) that assume stable, hybrid, intra-molecular quadruplex structures and bind with high affinity to PrP. Here, we investigate the ability of PrP to bind to the quadruplexes in its own promoter. We used a battery of techniques including SPR, NMR, CD, MD simulations and cell culture-based reporter assays. Our results show that PrP auto-regulates its expression by binding and resolving the GQs present in its own promoter. Furthermore, we map this resolvase-like activity to the N-terminal region (residues 23-89) of PrP. Our findings highlight a positive transcriptional-translational feedback regulation of the PRNP gene by PrP through dynamic unwinding of GQs in its promoter. Taken together, our results shed light on a yet unknown mechanism of regulation of the PRNP gene. This work provides the necessary framework for a plethora of studies on understanding the regulation of PrP levels and its implications in prion pathogenesis.
Collapse
Affiliation(s)
- Prashant Pradhan
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Ankit Srivastava
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Jasdeep Singh
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Banhi Biswas
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Akanksha Saini
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Ibrar Siddique
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pooja Kumari
- Transcription Regulation group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mohd Asim Khan
- Department of Biochemistry, University of Delhi, South Campus, New Delhi 110021, India
| | - Akhilesh Mishra
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Pramod Kumar Yadav
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Shivani Kumar
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prasanna Venkatraman
- Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, 2nd floor, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India.
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
5
|
Unraveling Prion Protein Interactions with Aptamers and Other PrP-Binding Nucleic Acids. Int J Mol Sci 2017; 18:ijms18051023. [PMID: 28513534 PMCID: PMC5454936 DOI: 10.3390/ijms18051023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/23/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative disorders that affect humans and other mammals. The etiologic agents common to these diseases are misfolded conformations of the prion protein (PrP). The molecular mechanisms that trigger the structural conversion of the normal cellular PrP (PrPC) into the pathogenic conformer (PrPSc) are still poorly understood. It is proposed that a molecular cofactor would act as a catalyst, lowering the activation energy of the conversion process, therefore favoring the transition of PrPC to PrPSc. Several in vitro studies have described physical interactions between PrP and different classes of molecules, which might play a role in either PrP physiology or pathology. Among these molecules, nucleic acids (NAs) are highlighted as potential PrP molecular partners. In this context, the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology has proven extremely valuable to investigate PrP–NA interactions, due to its ability to select small nucleic acids, also termed aptamers, that bind PrP with high affinity and specificity. Aptamers are single-stranded DNA or RNA oligonucleotides that can be folded into a wide range of structures (from harpins to G-quadruplexes). They are selected from a nucleic acid pool containing a large number (1014–1016) of random sequences of the same size (~20–100 bases). Aptamers stand out because of their potential ability to bind with different affinities to distinct conformations of the same protein target. Therefore, the identification of high-affinity and selective PrP ligands may aid the development of new therapies and diagnostic tools for TSEs. This review will focus on the selection of aptamers targeted against either full-length or truncated forms of PrP, discussing the implications that result from interactions of PrP with NAs, and their potential advances in the studies of prions. We will also provide a critical evaluation, assuming the advantages and drawbacks of the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technique in the general field of amyloidogenic proteins.
Collapse
|
6
|
Zhu D, Zhao C, Wang X, Wang W, Wang B, Du W. Roles of DMSO-type ruthenium complexes in disaggregation of prion neuropeptide PrP106–126. RSC Adv 2016. [DOI: 10.1039/c5ra21523d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
DMSO-type ruthenium complexes with aromatic ligands disaggregate the mature PrP106–126 fibrilsviametal coordination and hydrophobic interaction.
Collapse
Affiliation(s)
- Dengsen Zhu
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| | - Cong Zhao
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| | - Xuesong Wang
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| | - Wenji Wang
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| | - Baohuai Wang
- College of Chemistry and Molecular Engineering
- Peking University
- China
| | - Weihong Du
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| |
Collapse
|
7
|
Mammalian prion protein (PrP) forms conformationally different amyloid intracellular aggregates in bacteria. Microb Cell Fact 2015; 14:174. [PMID: 26536866 PMCID: PMC4634817 DOI: 10.1186/s12934-015-0361-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/17/2015] [Indexed: 01/21/2023] Open
Abstract
Background An increasing number of proteins are being shown to assemble into amyloid structures that lead to pathological states. Among them, mammalian prions outstand due to their ability to transmit the pathogenic conformation, becoming thus infectious. The structural conversion of the cellular prion protein (PrPC), into its misfolded pathogenic form (PrPSc) is the central event of prion-driven pathologies. The study of the structural properties of intracellular amyloid aggregates in general and of prion-like ones in particular is a challenging task. In this context, the evidence that the inclusion bodies formed by amyloid proteins in bacteria display amyloid-like structural and functional properties make them a privileged system to model intracellular amyloid aggregation. Results Here we provide the first demonstration that recombinant murine PrP and its C-terminal domain (90–231) attain amyloid conformations inside bacteria. Moreover, the inclusions formed by these two PrP proteins display conformational diversity, since they differ in fibril morphology, binding affinity to amyloid dyes, stability, resistance to proteinase K digestion and neurotoxicity. Conclusions Overall, our results suggest that modelling PrP amyloid formation in microbial cell factories might open an avenue for a better understanding of the structural features modulating the pathogenic impact of this intriguing protein. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0361-y) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Di Natale G, Turi I, Pappalardo G, Sóvágó I, Rizzarelli E. Cross-Talk Between the Octarepeat Domain and the Fifth Binding Site of Prion Protein Driven by the Interaction of Copper(II) with the N-terminus. Chemistry 2015; 21:4071-84. [DOI: 10.1002/chem.201405502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 12/21/2022]
|
9
|
Miotto MC, Binolfi A, Zweckstetter M, Griesinger C, Fernández CO. Bioinorganic chemistry of synucleinopathies: deciphering the binding features of Met motifs and His-50 in AS-Cu(I) interactions. J Inorg Biochem 2014; 141:208-211. [PMID: 25218565 DOI: 10.1016/j.jinorgbio.2014.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 01/01/2023]
Abstract
The aggregation of alpha-synuclein (AS) is a critical step in the etiology of Parkinson's disease (PD) and other neurodegenerative synucleinopathies. This process is selectively enhanced by copper in vitro and the interaction is proposed to play a potential role in vivo. Presently, the identity of the Cu(I) binding sites in AS and their relative affinities are under debate. In this work we have addressed unresolved details related to the structural binding specificity and affinity of Cu(I) to full-length AS. We demonstrated conclusively that: (i) the binding preferences of Cu(I) for the Met-binding sites at the N- (Kd=20 μM) and C-terminus (Kd=270 μM) of AS are widely different: (ii) the imidazole ring of His-50 acts as an effective anchoring residue (Kd=50 μM) for Cu(I) binding to AS; and (iii) no major structural rearrangements occur in the protein upon Cu(I) binding. Overall, our work shows that Cu(I) binding to the N- and C-terminal regions of AS are two independent events, with substantial differences in their affinities, and suggest that protein oxidative damage derived from a misbalance in cellular copper homeostasis would target preferentially the N-terminal region of AS. This knowledge is key to understanding the structural-aggregation basis of the copper catalyzed oxidation of AS.
Collapse
Affiliation(s)
- Marco C Miotto
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR), Universidad Nacional de Rosario, 27 de Febrero 210 bis, S2002LRK Rosario, Argentina; Instituto de Biología Molecular y Celular de Rosario, IBR-CONICET, Universidad Nacional de Rosario, 27 de Febrero 210 bis, S2002LRK Rosario, Argentina
| | - Andrés Binolfi
- Department of NMR-supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP), Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Markus Zweckstetter
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medicine Göttingen, 37073 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Claudio O Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR), Universidad Nacional de Rosario, 27 de Febrero 210 bis, S2002LRK Rosario, Argentina; Instituto de Biología Molecular y Celular de Rosario, IBR-CONICET, Universidad Nacional de Rosario, 27 de Febrero 210 bis, S2002LRK Rosario, Argentina.
| |
Collapse
|