Yang Y, Wang X, Dong H. Simulating chemical reactions promoted by self-assembled peptides with catalytic properties.
Methods Enzymol 2024;
697:321-343. [PMID:
38816128 DOI:
10.1016/bs.mie.2024.03.001]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Peptides that self-assemble exhibit distinct three-dimensional structures and attributes, positioning them as promising candidates for biocatalysts. Exploring their catalytic processes enhances our comprehension of the catalytic actions inherent to self-assembling peptides, laying a theoretical foundation for creating novel biocatalysts. The investigation into the intricate reaction mechanisms of these entities is rendered challenging due to the vast variability in peptide sequences, their aggregated formations, supportive elements, structures of active sites, types of catalytic reactions, and the interplay between these variables. This complexity hampers the elucidation of the linkage between sequence, structure, and catalytic efficiency in self-assembling peptide catalysts. This chapter delves into the latest progress in understanding the mechanisms behind peptide self-assembly, serving as a catalyst in hydrolysis and oxidation reactions, and employing computational analyses. It discusses the establishment of models, selection of computational strategies, and analysis of computational procedures, emphasizing the application of modeling techniques in probing the catalytic mechanisms of peptide self-assemblies. It also looks ahead to the potential future trajectories within this research domain. Despite facing numerous obstacles, a thorough investigation into the structural and catalytic mechanisms of peptide self-assemblies, combined with the ongoing advancement in computational simulations and experimental methodologies, is set to offer valuable theoretical insights for the development of new biocatalysts, thereby significantly advancing the biocatalysis field.
Collapse