1
|
Trayford C, Ibrahim DM, van Rijt S. Ion Doped Hollow Silica Nanoparticles as Promising Oligonucleotide Delivery Systems to Mesenchymal Stem Cells. Int J Nanomedicine 2024; 19:9741-9755. [PMID: 39329032 PMCID: PMC11424689 DOI: 10.2147/ijn.s461167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Oligonucleotide (ON) therapy is a promising treatment for a wide range of complex genetic disorders, but inefficient intracellular ON delivery has hindered clinical translation. Hollow silica nanoparticles (HSN) hold potential as effective ON delivery vehicles since ON can be encapsulated in the hollow core in situ where they are protected from degradation by eg nucleases. However, HSN must be modified to allow degradation and subsequent (sub)cellular ON release. In this report, we investigated the use of ion and fluorescent dye co-doping in the HSN silica matrix to enable HSN degradability and in vitro visualization. Methods HSN were core encapsulated with ON, doped with Ca2+, Cu2+, Zn2+, Se2+ and Sr2+ ions and co-condensed with rhodamine b isothiocyanate (RITC) by a modified reverse microemulsion method. HSN were physiochemically characterized and their biological activity such as uptake and toxicity were evaluated in mesenchymal stem cells (hMSCs). Results We successfully doped HSN with RITC and Ca2+, Cu2+, Zn2+ and Sr2+ ions. We observed that doping HSN with Ca2+ and Sr2+ enhanced RITC incorporation while ON encapsulation in HSN increased Cu2+ and Zn2+ doping efficiency. Moreover, our dual-doped HSN demonstrated controlled ON release in the presence of intracellular mimicking levels of glutathione (GSH) and limited release in the absence of GSH over 14 days. HSN were biocompatible in hMSCs up to 300 µg/mL except for Cu2+ doped HSNs which were cytotoxic even at ~10 µg/mL. HSN uptake was influenced by the dopant ion, DNA encapsulation, and HSN concentration, where Zn-HSN showed the lowest and Sr-HSN and Se-HSND, the highest uptake in hMSCs. Conclusion We report a straightforward one-pot procedure to create ion and fluorescent dye co-doped HSN that can efficiently incorporate ON, as promising new gene vectors.
Collapse
Affiliation(s)
- Chloe Trayford
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, MD, 6200, the Netherlands
| | - Dina M Ibrahim
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, MD, 6200, the Netherlands
| | - Sabine van Rijt
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, MD, 6200, the Netherlands
| |
Collapse
|
2
|
Wu E, Guo X, Teng X, Zhang R, Li F, Cui Y, Zhang D, Liu Q, Luo J, Wang J, Chen R. Discovery of Plasma Membrane-Associated RNAs through APEX-seq. Cell Biochem Biophys 2021; 79:905-917. [PMID: 34028638 DOI: 10.1007/s12013-021-00991-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
In addition to nucleic acids, a variety of other biomolecules have also been found on the plasma membrane. Although researchers have realized that RNA has the ability to bind to membrane vesicles in vitro, little is known about whether and how RNA connects to the plasma membrane of the cell. The combination of high-throughput sequencing and in situ labeling methods provides an innovative approach for large-scale identification of subcellular RNAs. Here, we applied the recently published method APEX-seq and identified 75 RNAs related to the plasma membrane, in which lncRNA PMAR72 (plasma membrane-associated RNA AL121772.1) has a considerable affinity with sphingomyelin (SM) and localizes within distinct membrane foci. Our findings will provide some new evidence to elaborate the relationship between RNA and the plasma membrane of mammalian cells.
Collapse
Affiliation(s)
- Erzhong Wu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xuzhen Guo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xueyi Teng
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ruijin Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fahui Li
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ya Cui
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Dongdong Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qinghua Liu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jianjun Luo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Jiangyun Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
3
|
Frańska M, Michalak A, Ławniczak Ł. Gas-phase hydration of Mg 2+ complexes with deprotonated uracil, thymine, uridine, and thymidine. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4504. [PMID: 31970857 DOI: 10.1002/jms.4504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
The gas-phase hydration of Mg2+ complexes with deprotonated uracil (U), thymine (T), uridine (Ur , uracil riboside), and thymidine (Tdr , thymine deoxyriboside) was studied. The aim of the work was to analyze the hydration of product ions (eg, [2U-H+Mg]+ ) formed as a result of the collision induced dissociation of the respective parent ion (eg, [3Ur -H+Mg]+ ). The efficiency of gas-phase hydration of the ions [2U-H+Mg]+ and [2T-H+Mg]+ was similar. However, the efficiency of gas-phase hydration of the ion [U+Ur -H+Mg]+ was much higher than that of gas-phase hydration of the ion [T+Tdr -H+Mg]+ . On the basis of the mass spectra obtained and the performed molecular modelling, it was concluded that in the ion [T+Tdr -H+Mg]+ , we deal with a steric hindrance due to the presence of a sugar moiety, which affects water attachment. In the ion [U+Ur -H+Mg]+ , the position of the sugar moiety does not affect water attachment.
Collapse
Affiliation(s)
- Magdalena Frańska
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Anna Michalak
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Łukasz Ławniczak
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| |
Collapse
|