1
|
Glowacka-Sobotta A, Czarczynska-Goslinska B, Ziental D, Wysocki M, Michalak M, Güzel E, Sobotta L. Versatile Porphyrin Arrangements for Photodynamic Therapy-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1879. [PMID: 39683268 DOI: 10.3390/nano14231879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Nanotechnology is an emerging field that involves the development of nanoscale particles, their fabrication methods, and potential applications. From nanosized inorganic particles to biopolymers, the variety of nanoparticles is unstoppably growing, offering huge opportunities for drug delivery. Various nanoformulations, such as nanoparticles, nanocomposites, and nanoemulsions, have been developed to enhance drug stability, solubility, and tissue penetration. Moreover, nanocarriers can be specifically engineered to target diseased cells or release the drug in a controllable manner, minimizing damage to surrounding healthy tissues and reducing side effects. This review focuses on the combinations between porphyrin derivatives and nanocarriers applied in photodynamic therapy (PDT). PDT has emerged as a significant advance in medicine, offering a low-invasive method for managing infections, the treatment of tumors, and various dermatoses. The therapy relies on the activation of a photosensitizer by light, which results in the generation of reactive oxygen species. Despite their favorable properties, porphyrins reveal non-specific distribution within the body. Nanotechnology has the capability to enhance the PS delivery and its activation. This review explores the potential improvements that are provided by the use of nanotechnology in the PDT field.
Collapse
Affiliation(s)
- Arleta Glowacka-Sobotta
- Chair and Department of Orthodontics and Temporomandibular Disorders, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Wysocki
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Maciej Michalak
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Emre Güzel
- Department of Engineering Fundamental Sciences, Sakarya University of Applied Sciences, 54050 Sakarya, Türkiye
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
2
|
Chen P, Ze R, Xia X, Zhang Z, Lu K, Wei L, Zhou B. Composite porphyrin-based conjugated microporous polymer/graphene oxide capable of photo-triggered combinational antibacterial therapy and wound healing. BIOMATERIALS ADVANCES 2023; 154:213662. [PMID: 37862813 DOI: 10.1016/j.bioadv.2023.213662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Developing antibiotic-free treatment strategies to cope with the crisis on drug-resistant bacteria, are urgently needed. Antibiotics-independent physical approaches, especially the non-invasive phototherapies, worked through the assistance of photosensitizer (PS), have geared intensive attention and interests. Here, composite porphyrin-based conjugated microporous polymer/graphene oxide, denoted as GO-TAPP, combining the advantages of each component perfectly, was developed as broad-spectrum antibacterial agent. GO-TAPP, prepared via the self-oxidation coupling of tetraethynyl porphyrin on the surface of graphene oxide, could exert synergistic photothermal (PTT, ascribed to the graphene) and photodynamic (PDT, derived from the Porphyrin polymer) antimicrobial effectiveness. Both the in vivo and in vitro experiments have confirmed GO-TAPP are extremely potent against the Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) pathogens, which presents a remarkably enhanced sterilizing effect in comparison with its counterparts (the bare GO, and TAPP). Meanwhile, the synergistic effect of GO-TAPP could significantly accelerate the healing of open wound infected by bacterial. Altogether, this work proposed a new approach for the rational preparation of highly biocompatible graphene-based composite materials as antibiotic-free agents with synergistic antibacterial effect to combat bacterial infections.
Collapse
Affiliation(s)
- Peilei Chen
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China
| | - Runsong Ze
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China
| | - Xiaohui Xia
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China
| | - Zifan Zhang
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China
| | - Keliang Lu
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China.
| | - Liuya Wei
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China.
| | - Baolong Zhou
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China.
| |
Collapse
|
3
|
Jovanović S, Marković Z, Budimir M, Prekodravac J, Zmejkoski D, Kepić D, Bonasera A, Marković BT. Lights and Dots toward Therapy-Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy. Pharmaceutics 2023; 15:pharmaceutics15041170. [PMID: 37111655 PMCID: PMC10145889 DOI: 10.3390/pharmaceutics15041170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The large number of deaths induced by carcinoma and infections indicates that the need for new, better, targeted therapy is higher than ever. Apart from classical treatments and medication, photodynamic therapy (PDT) is one of the possible approaches to cure these clinical conditions. This strategy offers several advantages, such as lower toxicity, selective treatment, faster recovery time, avoidance of systemic toxic effects, and others. Unfortunately, there is a small number of agents that are approved for usage in clinical PDT. Novel, efficient, biocompatible PDT agents are, thus, highly desired. One of the most promising candidates is represented by the broad family of carbon-based quantum dots, such as graphene quantum dots (GQDs), carbon quantum dots (CQDs), carbon nanodots (CNDs), and carbonized polymer dots (CPDs). In this review paper, these new smart nanomaterials are discussed as potential PDT agents, detailing their toxicity in the dark, and when they are exposed to light, as well as their effects on carcinoma and bacterial cells. The photoinduced effects of carbon-based quantum dots on bacteria and viruses are particularly interesting, since dots usually generate several highly toxic reactive oxygen species under blue light. These species are acting as bombs on pathogen cells, causing various devastating and toxic effects on those targets.
Collapse
Affiliation(s)
- Svetlana Jovanović
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Zoran Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Milica Budimir
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Jovana Prekodravac
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Danica Zmejkoski
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Dejan Kepić
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Aurelio Bonasera
- Palermo Research Unit, Department of Physics and Chemistry-Emilio Segrè, University of Palermo and Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 90128 Palermo, Italy
| | - Biljana Todorović Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Dibona-Villanueva L, Fuentealba D. Protoporphyrin IX-Chitosan Oligosaccharide Conjugate with Potent Antifungal Photodynamic Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9276-9282. [PMID: 35866700 DOI: 10.1021/acs.jafc.2c01644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A new chemical conjugate between protoporphyrin IX (PPIX) and chitosan oligosaccharides (CH) was prepared and evaluated in vitro as an antifungal agent against Penicillium digitatum. Chemical characterization and photophysical/photochemical studies were conducted. The antifungal effect of the CH-PPIX conjugate was compared to its components (PPIX and CH) and a physical mixture of both, under dark and illuminated conditions. The CH-PPIX conjugate was photostable and inhibited fungal growth with 100% efficiency at a dose of 0.005% w/v under visible light irradiation, while no antifungal activity was observed in the dark. Under the same conditions, CH and PPIX did not display any fungicidal activity, demonstrating the improved properties of the conjugate. Insights into the mechanism of fungal inactivation revealed an efficient spore uptake and photoinduced membrane damage through singlet oxygen generation. This new bioconjugate, which is based on natural components, represents a promising agent for fungicidal formulations based on antimicrobial photodynamic therapy.
Collapse
Affiliation(s)
- Luciano Dibona-Villanueva
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile
| | - Denis Fuentealba
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile
| |
Collapse
|
5
|
Wang T, Qin J, Cheng J, Li C, Du J. Intelligent design of polymersomes for antibacterial and anticancer applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1822. [PMID: 35673991 DOI: 10.1002/wnan.1822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023]
Abstract
Polymersomes (or polymer vesicles) have attracted much attention for biomedical applications in recent years because their lumen can be used for drug delivery and their coronas and membrane can be modified with a variety of functional groups. Thus, polymersomes are very suitable for improved antibacterial and anticancer therapy. This review mainly highlighted recent advances in the synthetic protocols and design principles of intelligent antibacterial and anticancer polymersomes. Antibacterial polymersomes are divided into three categories: polymersomes as antibiotic nanocarriers, intrinsically antibacterial polymersomes, and antibacterial polymersomes with supplementary means including photothermal and photodynamic therapy. Similarly, the anticancer polymersomes are divided into two categories: polymersomes-based delivery systems and anticancer polymersomes with supplementary means. In addition, the bilateral relationship between bacteria and cancer is addressed, since more and more evidences show that bacteria may cause cancer or promote cancer progression. Finally, prospective on next-generation antibacterial and anticancer polymersomes are discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Tao Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Jinlong Qin
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China.,Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiajing Cheng
- Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chang Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China.,Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Nistorescu S, Udrea AM, Badea MA, Lungu I, Boni M, Tozar T, Dumitrache F, Maraloiu VA, Popescu RG, Fleaca C, Andronescu E, Dinischiotu A, Staicu A, Balas M. Low Blue Dose Photodynamic Therapy with Porphyrin-Iron Oxide Nanoparticles Complexes: In Vitro Study on Human Melanoma Cells. Pharmaceutics 2021; 13:2130. [PMID: 34959411 PMCID: PMC8705854 DOI: 10.3390/pharmaceutics13122130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/10/2023] Open
Abstract
The purpose of this study was to investigate the effectiveness in photodynamic therapy of iron oxide nanoparticles (γ-Fe2O3 NPs), synthesized by laser pyrolysis technique, functionalized with 5,10,15,20-(Tetra-4-sulfonatophenyl) porphyrin tetraammonium (TPPS) on human cutaneous melanoma cells, after only 1 min blue light exposure. The efficiency of porphyrin loading on the iron oxide nanocarriers was estimated by using absorption and FTIR spectroscopy. The singlet oxygen yield was determined via transient characteristics of singlet oxygen phosphorescence at 1270 nm both for porphyrin functionalized nanoparticles and rose bengal used as standard. The irradiation was performed with a LED (405 nm, 1 mW/cm2) for 1 min after melanoma cells were treated with TPPS functionalized iron oxide nanoparticles (γ-Fe2O3 NPs_TPPS) and incubated for 24 h. Biological tests revealed a high anticancer effect of γ-Fe2O3 NPs_TPPS complexes indi-cated by the inhibition of tumor cell proliferation, reduction of cell adhesion, and induction of cell death through ROS generated by TPPS under light exposure. The biological assays were combined with the pharmacokinetic prediction of the porphyrin.
Collapse
Affiliation(s)
- Simona Nistorescu
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (S.N.); (A.-M.U.); (I.L.); (M.B.); (T.T.); (F.D.); (C.F.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.A.B.); (R.G.P.); (A.D.)
| | - Ana-Maria Udrea
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (S.N.); (A.-M.U.); (I.L.); (M.B.); (T.T.); (F.D.); (C.F.)
- Research Institute of the University of Bucharest, Earth, Environmental and Life Sciences, Section-ICUB, 050663 Bucharest, Romania
| | - Madalina Andreea Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.A.B.); (R.G.P.); (A.D.)
| | - Iulia Lungu
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (S.N.); (A.-M.U.); (I.L.); (M.B.); (T.T.); (F.D.); (C.F.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania;
| | - Mihai Boni
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (S.N.); (A.-M.U.); (I.L.); (M.B.); (T.T.); (F.D.); (C.F.)
| | - Tatiana Tozar
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (S.N.); (A.-M.U.); (I.L.); (M.B.); (T.T.); (F.D.); (C.F.)
| | - Florian Dumitrache
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (S.N.); (A.-M.U.); (I.L.); (M.B.); (T.T.); (F.D.); (C.F.)
| | | | - Roua Gabriela Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.A.B.); (R.G.P.); (A.D.)
| | - Claudiu Fleaca
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (S.N.); (A.-M.U.); (I.L.); (M.B.); (T.T.); (F.D.); (C.F.)
| | - Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania;
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.A.B.); (R.G.P.); (A.D.)
| | - Angela Staicu
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (S.N.); (A.-M.U.); (I.L.); (M.B.); (T.T.); (F.D.); (C.F.)
| | - Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.A.B.); (R.G.P.); (A.D.)
| |
Collapse
|
7
|
Youf R, Müller M, Balasini A, Thétiot F, Müller M, Hascoët A, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics 2021; 13:1995. [PMID: 34959277 PMCID: PMC8705969 DOI: 10.3390/pharmaceutics13121995] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a fundamental tool in modern therapeutics, notably due to the expanding versatility of photosensitizers (PSs) and the numerous possibilities to combine aPDT with other antimicrobial treatments to combat localized infections. After revisiting the basic principles of aPDT, this review first highlights the current state of the art of curative or preventive aPDT applications with relevant clinical trials. In addition, the most recent developments in photochemistry and photophysics as well as advanced carrier systems in the context of aPDT are provided, with a focus on the latest generations of efficient and versatile PSs and the progress towards hybrid-multicomponent systems. In particular, deeper insight into combinatory aPDT approaches is afforded, involving non-radiative or other light-based modalities. Selected aPDT perspectives are outlined, pointing out new strategies to target and treat microorganisms. Finally, the review works out the evolution of the conceptually simple PDT methodology towards a much more sophisticated, integrated, and innovative technology as an important element of potent antimicrobial strategies.
Collapse
Affiliation(s)
- Raphaëlle Youf
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Max Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Ali Balasini
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Alizé Hascoët
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| |
Collapse
|
8
|
Saleh TA, Elsharif AM, Bin-Dahman OA. Synthesis of amine functionalization carbon nanotube-low symmetry porphyrin derivatives conjugates toward dye and metal ions removal. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Meyer CE, Schoenenberger CA, Wehr RP, Wu D, Palivan CG. Artificial Melanogenesis by Confining Melanin/Polydopamine Production inside Polymersomes. Macromol Biosci 2021; 21:e2100249. [PMID: 34510748 DOI: 10.1002/mabi.202100249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/09/2021] [Indexed: 11/08/2022]
Abstract
Melanin and polydopamine are potent biopolymers for the development of biomedical nanosystems. However, applications of melanin or polydopamine-based nanoparticles are limited by drawbacks related to a compromised colloidal stability over long time periods and associated cytotoxicity. To overcome these hurdles, a novel strategy is proposed that mimics the confinement of natural melanin in melanosomes. Melanosome mimics are developed by co-encapsulating the melanin/polydopamine precursors L-DOPA/dopamine with melanogenic enzyme Tyrosinase within polymersomes. The conditions of polymersome formation are optimized to obtain melanin/polydopamine polymerization within the cavity of the polymersomes. Similar to native melanosomes, polymersomes containing melanin/polydopamine show long-term colloidal stability, cell-compatibility, and potential for cell photoprotection. This novel kind of artificial melanogenesis is expected to inspire new applications of the confined melanin/polydopamine biopolymers.
Collapse
Affiliation(s)
- Claire E Meyer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland.,NCCR-Molecular Systems Engineering, BPR1095, Basel, 4058, Switzerland
| | - Riccardo P Wehr
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland
| | - Dalin Wu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland.,NCCR-Molecular Systems Engineering, BPR1095, Basel, 4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland.,NCCR-Molecular Systems Engineering, BPR1095, Basel, 4058, Switzerland
| |
Collapse
|
10
|
Rossi GG, Guterres KB, Moreira KS, Burgo TAL, de Campos MMA, Iglesias BA. Photo-damage promoted by tetra-cationic palladium(II) porphyrins in rapidly growing mycobacteria. Photodiagnosis Photodyn Ther 2021; 36:102514. [PMID: 34481062 DOI: 10.1016/j.pdpdt.2021.102514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) has gained prominence in microbiology, especially in treating non-invasive infections. Diseases such as mycobacteriosis, which causes localized infections and has a slow treatment, tend to be future targets for this type of technology. Therefore, this study aimed to explore the action of two isomeric Pd(II)-porphyrins on fast-growing mycobacterial strains (RGM). Tetra-cationic porphyrins (4-PdTPyP and 3-PdTPyP) were synthesized and applied against standard strains of Mycobacteroides abscessus subsp. abscessus (ATCC 19977), Mycolicibacterium fortuitum (ATCC 6841), Mycolicibacterium smegmatis (ATCC 700084), and Mycobacteroides abscessus subsp. massiliense (ATCC 48898). Reactive oxygen species (ROS) scavengers were used in an attempt to determine possible ROS produced by the photosensitizers (PS) under study. Moreover, the impact of porphyrin on the mycobacterial surface was further evaluated by atomic force microscopy (AFM), and we observed significant damage on cells walls and altered nanomechanical and electrostatic adhesion properties. The results presented herein show that the positively charged porphyrin at the meta position (3-PdTPyP) was the most efficient PS against the RGM strains, and its bactericidal activity was proven in two irradiation sessions, with singlet oxygen species being the main ROS involved in this process. This study demonstrated the therapeutic potential of porphyrins, especially the 3-PdTPyP derivative.
Collapse
Affiliation(s)
- Grazille Guidolin Rossi
- Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Kevim Bordignon Guterres
- Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Kelly Schneider Moreira
- Coulomb Electrostatic and Mechanochemistry Laboratory, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Thiago Augusto Lima Burgo
- Coulomb Electrostatic and Mechanochemistry Laboratory, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Marli Matiko Anraku de Campos
- Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Bernardo Almeida Iglesias
- Bioinorganic and Porphyrinic Materials Laboratory, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil..
| |
Collapse
|
11
|
Gale CB, Yan ZB, Fefer M, Goward GR, Brook MA. Synthesis of Siliconized Photosensitizers for Use in 1O 2-Generating Silicone Elastomers: An Electron Paramagnetic Resonance Study. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Cody B. Gale
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Z. Blossom Yan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Michael Fefer
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, Ontario L5K 1A8, Canada
| | - Gillian R. Goward
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Michael A. Brook
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
12
|
Oyim J, Omolo CA, Amuhaya EK. Photodynamic Antimicrobial Chemotherapy: Advancements in Porphyrin-Based Photosensitize Development. Front Chem 2021; 9:635344. [PMID: 33898388 PMCID: PMC8058465 DOI: 10.3389/fchem.2021.635344] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
The reduction of available drugs with effectiveness against microbes is worsening with the current global crisis of antimicrobial resistance. This calls for innovative strategies for combating antimicrobial resistance. Photodynamic Antimicrobial Chemotherapy (PACT) is a relatively new method that utilizes the combined action of light, oxygen, and a photosensitizer to bring about the destruction of microorganisms. This technique has been found to be effective against a wide spectrum of microorganisms, including bacteria, viruses, and fungi. Of greater interest is their ability to destroy resistant strains of microorganisms and in effect help in combating the emergence of antimicrobial resistance. This manuscript reviews porphyrins and porphyrin-type photosensitizers that have been studied in the recent past with a focus on their structure-activity relationship.
Collapse
Affiliation(s)
- James Oyim
- School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi, Kenya
- Department of Chemistry, University of Nairobi, Nairobi, Kenya
| | - Calvin A. Omolo
- School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi, Kenya
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Edith K. Amuhaya
- School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi, Kenya
| |
Collapse
|
13
|
Bair KL, Shafirstein G, Campagnari AA. In vitro Photodynamic Therapy of Polymicrobial Biofilms Commonly Associated With Otitis Media. Front Microbiol 2020; 11:558482. [PMID: 32983076 PMCID: PMC7487423 DOI: 10.3389/fmicb.2020.558482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/12/2020] [Indexed: 11/15/2022] Open
Abstract
Otitis media (OM) is a prevalent pediatric infection characterized by painful inflammation of the middle ear. There are more than 700 million cases of OM diagnosed globally each year, with 50% of affected children under 5 years of age. Further, OM is the most common reason for children to receive antibiotic treatment in developed countries. The most recent work on this dynamic disease indicates that biofilms and polymicrobial infections play a role in recurrent OM and chronic OM, which are difficult to eradicate using standard antibiotic protocols. Antimicrobial photodynamic therapy (aPDT) is a promising new strategy for the treatment of resistant bacteria and persistent biofilms which lead to chronic infections. While PDT continues to be successfully used for oncological, dermatological, and dental applications, our work focuses on the efficacy of aPDT as it relates to otopathogens responsible for OM. Previous studies from our laboratory and others have shown that non-typeable Haemophilus influenzae, Streptococcus pneumoniae and Moraxella catarrhalis, the three most common otopathogens, are susceptible to different forms of aPDT. However, many cases of OM involve multiple bacteria and to date no one has investigated the efficacy of this technology on these complex polymicrobial biofilms. We treated polymicrobial biofilms of the three most common otopathogens with the photosensitizer Chlorin e6 (Ce6) and a continuous wave 405 ± 10 nm light emitted diode. Our data show significant bactericidal activity on polymicrobial biofilms associated with OM. These studies indicate that aPDT warrants further analysis as a possible treatment for OM and our results provide the foundation for future studies designed to identify the optimal aPDT parameters for polymicrobial biofilm-associated infections of the middle ear.
Collapse
Affiliation(s)
- Kirsten L Bair
- Department of Microbiology and Immunology, Jacobs School of Medicine, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Gal Shafirstein
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Anthony A Campagnari
- Department of Microbiology and Immunology, Jacobs School of Medicine, University at Buffalo, State University of New York, Buffalo, NY, United States.,The Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
14
|
Capaldo L, Ertl M, Fagnoni M, Knör G, Ravelli D. Antimony-Oxo Porphyrins as Photocatalysts for Redox-Neutral C-H to C-C Bond Conversion. ACS Catal 2020; 10:9057-9064. [PMID: 33815891 PMCID: PMC8009479 DOI: 10.1021/acscatal.0c02250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/16/2020] [Indexed: 02/03/2023]
Abstract
The use of high-valent antimony-oxo porphyrins as visible-light photocatalysts operating via direct hydrogen atom transfer has been demonstrated. Computational analysis indicates that the triplet excited state of these complexes shows an oxyl radical behavior, while the SbV center remains in a high-valent oxidation state, serving uniquely to carry the oxo moiety and activate the coordinated ligands. This porphyrin-based system has been exploited upon irradiation to catalyze C-H to C-C bond conversion via the addition of hydrogen donors (ethers and aldehydes) onto Michael acceptors in a redox-neutral fashion without the need of any external oxidant. Laser flash photolysis experiments confirmed that the triplet excited state of the photocatalyst triggers the desired C-H cleavage.
Collapse
Affiliation(s)
- Luca Capaldo
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Martin Ertl
- Institute of Inorganic Chemistry, Johannes Kepler University Linz (JKU), Altenberger Strasse 69, 4040 Linz, Austria
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Günther Knör
- Institute of Inorganic Chemistry, Johannes Kepler University Linz (JKU), Altenberger Strasse 69, 4040 Linz, Austria
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
15
|
Liu X, Chang Q, Ferrer-Espada R, Leanse LG, Goh XS, Wang X, Gelfand JA, Dai T. Photoinactivation of Moraxella catarrhalis Using 405-nm Blue Light: Implications for the Treatment of Otitis Media. Photochem Photobiol 2020; 96:611-617. [PMID: 32105346 PMCID: PMC10125262 DOI: 10.1111/php.13241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/03/2020] [Indexed: 12/30/2022]
Abstract
Moraxella catarrhalis is one of the major otopathogens of otitis media (OM) in childhood. M. catarrhalis tends to form biofilm, which contributes to the chronicity and recurrence of infections, as well as resistance to antibiotic treatment. In this study, we aimed to investigate the effectiveness of antimicrobial blue light (aBL; 405 nm), an innovative nonpharmacological approach, for the inactivation of M. catarrhalis OM. M. catarrhalis either in planktonic suspensions or 24-h old biofilms were exposed to aBL at the irradiance of 60 mW cm-2 . Under an aBL exposure of 216 J cm-2 , a >4-log10 colony-forming units (CFU) reduction in planktonic suspensions and a >3-log10 CFU reduction in biofilms were observed. Both transmission electron microscopy and scanning electron microscopy revealed aBL-induced morphological damage in M. catarrhalis. Ultraperformance liquid chromatography results indicated that protoporphyrin IX and coproporphyrin were the two most abundant species of endogenous photosensitizing porphyrins. No statistically significant reduction in the viability of HaCaT cells was observed after an aBL exposure of up to 216 J cm-2 . Collectively, our results suggest that aBL is potentially an effective and safe alternative therapy for OM caused by M. catarrhalis. Further in vivo studies are warranted before this optical approach can be moved to the clinics.
Collapse
Affiliation(s)
- Xiaojing Liu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Qihang Chang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Tongji University School of Medicine, Shanghai, China
| | - Raquel Ferrer-Espada
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Leon G Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Xueping Sharon Goh
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jeffrey A Gelfand
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Kyropoulou M, DiLeone S, Lanzilotto A, Constable EC, Housecroft CE, Meier WP, Palivan CG. Porphyrin Containing Polymersomes with Enhanced ROS Generation Efficiency: In Vitro Evaluation. Macromol Biosci 2019; 20:e1900291. [DOI: 10.1002/mabi.201900291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/03/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Myrto Kyropoulou
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Stefano DiLeone
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Angelo Lanzilotto
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Edwin C. Constable
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | | | - Wolfgang P. Meier
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Cornelia G. Palivan
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| |
Collapse
|
17
|
Yan L, Luo L, Amirshaghaghi A, Miller J, Meng C, You T, Busch TM, Tsourkas A, Cheng Z. Dextran-Benzoporphyrin Derivative (BPD) Coated Superparamagnetic Iron Oxide Nanoparticle (SPION) Micelles for T 2-Weighted Magnetic Resonance Imaging and Photodynamic Therapy. Bioconjug Chem 2019; 30:2974-2981. [PMID: 31661959 DOI: 10.1021/acs.bioconjchem.9b00676] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Photodynamic therapy (PDT) has attracted extensive attention in recent years as a noninvasive and locally targeted cancer treatment approach. Nanoparticles have been used to improve the solubility and pharmacokinetics of the photosensitizers required for PDT; however, nanoparticles also suffer from many shortcomings including uncontrolled drug release and low tumor accumulation. Herein, we describe a novel biodegradable nanoplatform for the delivery of the clinically used PDT photosensitizer benzoporphyrin derivative monoacid ring A (BPD-MA) to tumors. Specifically, the hydrophobic photosensitizer BPD was covalently conjugated to the amine groups of a dextran-b-oligo (amidoamine) (dOA) dendron copolymer, forming amphiphilic dextran-BPD conjugates that can self-assemble into nanometer-sized micelles in water. To impart additional imaging capabilities to these micelles, superparamagnetic iron oxide nanoparticles (SPIONs) were encapsulated within the hydrophobic core to serve as a magnetic resonance imaging (MRI) contrast agent. The use of a photosensitizer as a hydrophobic building block enabled facile and reproducible synthesis and high drug loading capacity (∼30%, w/w). Furthermore, covalent conjugation of BPD to dextran prevents the premature release of drug during systemic circulation. In vivo studies show that the intravenous administration of dextran-BPD coated SPION nanoparticles results in significant MR contrast enhancement within tumors 24 h postinjection and PDT led to a significant reduction in the tumor growth rate.
Collapse
Affiliation(s)
- Lesan Yan
- Department of Bioengineering, School of Engineering and Applied Sciences , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Lijun Luo
- Department of Bioengineering, School of Engineering and Applied Sciences , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States.,School of Agricultural Equipment Engineering , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Ahmad Amirshaghaghi
- Department of Bioengineering, School of Engineering and Applied Sciences , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Joann Miller
- Department of Radiation Oncology, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Cathy Meng
- Department of Bioengineering, School of Engineering , University of California Berkeley , Berkeley , California 94720 , United States
| | - Tianyan You
- School of Agricultural Equipment Engineering , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Andrew Tsourkas
- Department of Bioengineering, School of Engineering and Applied Sciences , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Zhiliang Cheng
- Department of Bioengineering, School of Engineering and Applied Sciences , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
18
|
Tian J, Zhang W. Synthesis, self-assembly and applications of functional polymers based on porphyrins. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Yorulmaz Avsar S, Kyropoulou M, Di Leone S, Schoenenberger CA, Meier WP, Palivan CG. Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces. Front Chem 2019; 6:645. [PMID: 30671429 PMCID: PMC6331732 DOI: 10.3389/fchem.2018.00645] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022] Open
Abstract
Biological membranes constitute an interface between cells and their surroundings and form distinct compartments within the cell. They also host a variety of biomolecules that carry out vital functions including selective transport, signal transduction and cell-cell communication. Due to the vast complexity and versatility of the different membranes, there is a critical need for simplified and specific model membrane platforms to explore the behaviors of individual biomolecules while preserving their intrinsic function. Information obtained from model membrane platforms should make invaluable contributions to current and emerging technologies in biotechnology, nanotechnology and medicine. Amphiphilic block co-polymers are ideal building blocks to create model membrane platforms with enhanced stability and robustness. They form various supramolecular assemblies, ranging from three-dimensional structures (e.g., micelles, nanoparticles, or vesicles) in aqueous solution to planar polymer membranes on solid supports (e.g., polymer cushioned/tethered membranes,) and membrane-like polymer brushes. Furthermore, polymer micelles and polymersomes can also be immobilized on solid supports to take advantage of a wide range of surface sensitive analytical tools. In this review article, we focus on self-assembled amphiphilic block copolymer platforms that are hosting biomolecules. We present different strategies for harnessing polymer platforms with biomolecules either by integrating proteins or peptides into assemblies or by attaching proteins or DNA to their surface. We will discuss how to obtain synthetic structures on solid supports and their characterization using different surface sensitive analytical tools. Finally, we highlight present and future perspectives of polymer micelles and polymersomes for biomedical applications and those of solid-supported polymer membranes for biosensing.
Collapse
|
20
|
Pibiri I, Buscemi S, Palumbo Piccionello A, Pace A. Photochemically Produced Singlet Oxygen: Applications and Perspectives. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800076] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
| | - Silvestre Buscemi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
- Dipartimento di Scienze per l'Innovazione Tecnologica; Istituto EuroMediterraneo di Scienza e Tecnologia - IEMEST; Via Michele Miraglia, 20 - 90139 - Palermo Italy
| |
Collapse
|
21
|
Freisinger E, Sigel RKO. Celebrating Helmut Sigel. J Biol Inorg Chem 2017; 23:1-5. [PMID: 29218638 DOI: 10.1007/s00775-017-1523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Eva Freisinger
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|