1
|
Lee JL, Biswas S, Ziller JW, Bominaar EL, Hendrich MP, Borovik AS. Accessing a synthetic Fe IIIMn IV core to model biological heterobimetallic active sites. Chem Sci 2024; 15:2817-2826. [PMID: 38404374 PMCID: PMC10882444 DOI: 10.1039/d3sc04900k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/22/2023] [Indexed: 02/27/2024] Open
Abstract
Metalloproteins with dinuclear cores are known to bind and activate dioxygen, with a subclass of these proteins having active sites containing FeMn cofactors and activities ranging from long-range proton-coupled electron transfer (PCET) to post-translational peptide modification. While mechanistic studies propose that these metallocofactors access FeIIIMnIV intermediates, there is a dearth of related synthetic analogs. Herein, the first well-characterized synthetic FeIII-(μ-O)-MnIV complex is reported; this complex shows similar spectroscopic features as the catalytically competent FeIIIMnIV intermediate X found in Class Ic ribonucleotide reductase and demonstrates PCET function towards phenolic substrates. This complex is prepared from the oxidation of the isolable FeIII-(μ-O)-MnIII species, whose stepwise assembly is facilitated by a tripodal ligand containing phosphinic amido groups. Structural and spectroscopic studies found proton movement involving the FeIIIMnIII core, whereby the initial bridging hydroxido ligand is converted to an oxido ligand with concomitant protonation of one phosphinic amido group. This series of FeMn complexes allowed us to address factors that may dictate the preference of an active site for a heterobimetallic cofactor over one that is homobimetallic: comparisons of the redox properties of our FeMn complexes with those of the di-Fe analogs suggested that the relative thermodynamic ease of accessing an FeIIIMnIV core can play an important role in determining the metal ion composition when the key catalytic steps do not require an overly potent oxidant. Moreover, these complexes allowed us to demonstrate the effect of the hyperfine interaction from non-Fe nuclei on 57Fe Mössbauer spectra which is relevant to MnFe intermediates in proteins.
Collapse
Affiliation(s)
- Justin L Lee
- Department of Chemistry, University of California-Irvine Irvine CA 92697 USA
| | - Saborni Biswas
- Department of Chemistry, Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Joseph W Ziller
- Department of Chemistry, University of California-Irvine Irvine CA 92697 USA
| | - Emile L Bominaar
- Department of Chemistry, Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University Pittsburgh PA 15213 USA
| | - A S Borovik
- Department of Chemistry, University of California-Irvine Irvine CA 92697 USA
| |
Collapse
|
2
|
Ekanayake DM, Pham D, Probst AL, Miller JR, Popescu CV, Fiedler AT. Electronic structures and spectroscopic signatures of diiron intermediates generated by O 2 activation of nonheme iron(II)-thiolate complexes. Dalton Trans 2021; 50:14432-14443. [PMID: 34570147 PMCID: PMC8721859 DOI: 10.1039/d1dt02286e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The activation of O2 at thiolate-ligated iron(II) sites is essential to the function of numerous metalloenzymes and synthetic catalysts. Iron-thiolate bonds in the active sites of nonheme iron enzymes arise from either coordination of an endogenous cysteinate residue or binding of a deprotonated thiol-containing substrate. Examples of the latter include sulfoxide synthases, such as EgtB and OvoA, that utilize O2 to catalyze tandem S-C bond formation and S-oxygenation steps in thiohistidine biosyntheses. We recently reported the preparation of two mononuclear nonheme iron-thiolate complexes (1 and 2) that serve as structural active-site models of substrate-bound EgtB and OvoA (Dalton Trans. 2020, 49, 17745-17757). These models feature monodentate thiolate ligands and tripodal N4 ligands with mixed pyridyl/imidazolyl donors. Here, we describe the reactivity of 1 and 2 with O2 at low temperatures to give metastable intermediates (3 and 4, respectively). Characterization with multiple spectroscopic techniques (UV-vis absorption, NMR, variable-field and -temperature Mössbauer, and resonance Raman) revealed that these intermediates are thiolate-ligated iron(III) dimers with a bridging oxo ligand derived from the four-electron reduction of O2. Structural models of 3 and 4 consistent with the experimental data were generated via density functional theory (DFT) calculations. The combined experimental and computational results illuminate the geometric and electronic origins of the unique spectral features of diiron(III)-μ-oxo complexes with thiolate ligands, and the spectroscopic signatures of 3 and 4 are compared to those of closely-related diiron(III)-μ-peroxo species. Collectively, these results will assist in the identification of intermediates that appear on the O2 reaction landscapes of iron-thiolate species in both biological and synthetic environments.
Collapse
Affiliation(s)
| | - Dao Pham
- Department of Chemistry, The College of Arts and Sciences, University of St. Thomas, St. Paul, Minnesota 55105, USA.
| | - Andrew L Probst
- Department of Chemistry, The College of Arts and Sciences, University of St. Thomas, St. Paul, Minnesota 55105, USA.
| | - Joshua R Miller
- Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA
| | - Codrina V Popescu
- Department of Chemistry, The College of Arts and Sciences, University of St. Thomas, St. Paul, Minnesota 55105, USA.
| | - Adam T Fiedler
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, USA.
| |
Collapse
|
3
|
Crossland PM, Guo Y, Que L. Spontaneous Formation of an Fe/Mn Diamond Core: Models for the Fe/Mn Sites in Class 1c Ribonucleotide Reductases. Inorg Chem 2021; 60:8710-8721. [PMID: 34110143 PMCID: PMC8997264 DOI: 10.1021/acs.inorgchem.1c00684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A handful of oxygen-activating enzymes has recently been found to contain Fe/Mn active sites, like Class 1c ribonucleotide reductases and R2-like ligand-binding oxidase, which are closely related to their better characterized diiron cousins. These enzymes are proposed to form high-valent intermediates with Fe-O-Mn cores. Herein, we report the first examples of synthetic Fe/Mn complexes that mimic doubly bridged intermediates proposed for enzymatic oxygen activation. Fe K-edge extended X-ray absorption fine structure (EXAFS) analysis has been used to characterize the structures of each of these compounds. Linear compounds accurately model the Fe···Mn distances found in Fe/Mn proteins in their resting states, and doubly bridged diamond core compounds accurately model the distances found in high-valent biological intermediates. Unlike their diiron analogues, the paramagnetic nature of Fe/Mn compounds can be analyzed by EPR, revealing S = 1/2 signals that reflect antiferromagnetic coupling between the high-spin Fe(III) and Mn(III) units of heterobimetallic centers. These compounds undergo electron transfer with various ferrocenes, linear compounds being capable of oxidizing diacetyl ferrocene, a weak reductant, and diamond core compounds being capable of oxidizing acetyl ferrocene. Diamond core compounds can also perform HAT reactions from substrates with X-H bonds with bond dissociation free energies (BDFEs) up to 75 kcal/mol and are capable of oxidizing TEMPO-H at rates of 0.32-0.37 M-1 s-1, which are comparable to those reported for some mononuclear FeIII-OH and MnIII-OH compounds. However, such reactivity is not observed for the corresponding diiron compounds, a difference that Nature may have taken advantage of in evolving enzymes with heterobimetallic active sites.
Collapse
Affiliation(s)
- Patrick M. Crossland
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Enhanced relative stability of heterobimetallic Fe(II), Zn(II), and Mg(II) clusters supported by a µ-phenoxo bridge. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Wang L, Gennari M, Cantú Reinhard FG, Padamati SK, Philouze C, Flot D, Demeshko S, Browne WR, Meyer F, de Visser SP, Duboc C. O2 Activation by Non-Heme Thiolate-Based Dinuclear Fe Complexes. Inorg Chem 2020; 59:3249-3259. [DOI: 10.1021/acs.inorgchem.9b03633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lianke Wang
- Institutes of Physical Science and Information Technology, Anhui University, 230601 Hefei, Anhui, P. R. China
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| | - Marcello Gennari
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| | - Fabián G. Cantú Reinhard
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sandeep K. Padamati
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | | | - David Flot
- ESRF European Synchrotron 71, Ave Martyrs Grenoble, 38000 Grenoble, France
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Wesley R. Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Carole Duboc
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| |
Collapse
|
6
|
Freisinger E, Sigel RKO. Celebrating Helmut Sigel. J Biol Inorg Chem 2017; 23:1-5. [PMID: 29218638 DOI: 10.1007/s00775-017-1523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Eva Freisinger
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|