1
|
Liu Z, Lin J, Li B, Zhou Y, Li C, Cui Y, Tian F, Tang R, Wang X. Manganese-mineralized cancer cells as immunogenic cancer vaccines for tumor immunotherapy. J Mater Chem B 2023; 11:10923-10928. [PMID: 37934507 DOI: 10.1039/d3tb01538f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The strategy of using tumor cells to construct whole-cell cancer vaccines has received widespread attention. However, the limited immunogenicity of inactivated tumor cells and the challenge of overcoming immune suppression in solid tumors have hindered the application of whole-cell-based cancer immune therapy. Inspired by the regulatory effects of MnO2 and spatiotemporal control capability of material layers in cell surface engineering, we developed a manganese (Mn)-mineralized tumor cell, B16F10@MnO2, by inactivating B16F10 melanoma cells with KMnO4 to generate manganese-mineralized tumor cells. The cell-based composite was formed by combining amorphous MnO2 with the membrane structure of cells based on the redox reaction between KMnO4 and tumor cells. The MnO2 layer induced a stronger phagocytosis of ovalbumin (OVA)-expressing tumor cells by antigen presenting cells than formaldehyde-fixed cells did, resulting in specific antigen-presentation in vitro and in vivo and subsequent immune responses. Intratumoral therapy with B16F10@MnO2 inhibited B16F10 tumor growth. Moreover, the infiltration of CD8+ T cells within B16F10 solid tumors and the proportion of central memory T cells both increased in B16F10@MnO2 treated tumor-bearing mice, indicating enhanced adaptive immunity. This study provides a convenient and effective method to improve whole-cell-based anti-tumor therapy.
Collapse
Affiliation(s)
- Zhenyu Liu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China.
| | - Jiake Lin
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China.
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Benke Li
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yuemin Zhou
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China.
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Chen Li
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yihao Cui
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Fengchao Tian
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Zhang M, Wang X, Xue Y, Li J, Wang J, Fang C, Zhu L. Robust and Scalable In Vitro Surface Mineralization of Inert Polymers with a Rationally Designed Molecular Bridge. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8730-8741. [PMID: 36735823 DOI: 10.1021/acsami.2c21286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The artificial integration of inorganic materials onto polymers to create the analogues of natural biocomposites is an attractive field in materials science. However, due to significant diversity in the interfacial properties of two kinds of materials, advanced synthesis methods are quite complicated and the resultant materials are always vulnerable to external environments, which limits their application scenarios and makes them unsuitable for scalable production. Herein, we report a simple and universal approach to achieve robust and scalable surface mineralization of polymers using a rationally designed triple functional molecular bridge of fluorosilane, 3-[(perfluorohexyl sulfonyl) amino] propyltriethoxy silane (PFSS). In a two-step solution deposition, the fluoroalkyl and siloxane of the PFSS take charge of its adhesion and immobilization onto polymers by hydrophobic interaction and wrapping-like chemical cross-linking, and then the assembly and growth of inorganic nanoclusters for integration are achieved by strong chemical coordination of PFSS sulfonamide. The versatile mineralization of inorganic oxides (e.g., TiO2, SiO2, and Fe2O3) onto chemically inert polymer surfaces was realized very well. The resultant mineralized materials exhibit robust and multiple functionalities for hostile applications, such as hydrophilic membranes for removing oils in strong acidic and alkaline wastewaters, fabrics with advanced anti-bacteria for healthy wearing, and plates with strong mechanical performance for better use. Experimental results and theoretical calculations confirmed the homogenous distribution of the PFSS onto polymers via cross-linking for robust coordination with inorganic oxides. These results demonstrate a skillful enlightenment in the design of high-performance mineralized polymer materials used as membranes, fabrics, and medical devices.
Collapse
Affiliation(s)
- Mengxiao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Xiaohe Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Yunyun Xue
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Jiaqi Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Jianyu Wang
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing312000, China
| | - Chuanjie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou310027, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing312000, China
| | - Liping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou310027, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing312000, China
| |
Collapse
|
3
|
Biomimetic mineralization: An emerging organism engineering strategy for biomedical applications. J Inorg Biochem 2022; 232:111815. [DOI: 10.1016/j.jinorgbio.2022.111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 04/02/2022] [Indexed: 11/21/2022]
|
4
|
Zhang J, Ji Y, Wang Z, Jia Y, Zhu Q. Effective improvements to the live-attenuated Newcastle disease virus vaccine by polyethylenimine-based biomimetic silicification. Vaccine 2022; 40:886-896. [PMID: 34991927 DOI: 10.1016/j.vaccine.2021.12.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Live and killed vaccines impart a significant role in preventing of Newcastle disease (ND) in China. Vaccine efficacy could be ameliorated by improving vaccine-induced cellular immunity and antibody persistency. Previous studies substantiated the potency of silicon dioxide (SiO2) in the control-release of drugs and as a vaccine adjuvant, and polyethylenimine (PEI) merits as a mucosal adjuvanticity with electro-positivity. The present study employed SiO2 and PEI to prepare biomimetic silicon mineralized nanoparticle G7M@SiO2-PEI and microparticle (SiO2 + PEI)@G7M vaccines of G7M, a candidate for live attenuated vaccine of genotype VII Newcastle disease virus (NDV). The zeta potential experiment confirmed the significant increase in the average zeta potential of the nanoparticle G7M@SiO2-PEI and microparticle (SiO2 + PEI)@G7M relative to G7M before mineralization. The results of RT-qPCR revealed more than 99% mineralization efficiency of the G7M@SiO2-PEI and (SiO2 + PEI)@G7M. The morphology detected by transmission electron microscopy reported that the diameters of G7M@SiO2-PEI were similar to those of G7M, while for (SiO2 + PEI)@G7M, it was about five times larger than that of G7M. Silicon was detected on the surface of both mineralization particles, except for G7M, as observed from the elemental distribution detected by elemental mapping and energy dispersive X-ray spectrogram. Indirect immunofluorescence assays validated that mineralization virus have replicated ability in BHK-21F cells. In vivo experiments revealed higher than 5.50 log2 of antibody in nanoparticles G7M@SiO2-PEI group until 10-week post-vaccination, and significant proliferation of antigen-specific CD3+CD4+ in nanoparticles G7M@SiO2-PEI immunized group corroborated improved cellular immune responses. Vaccines provided full protection to the immunized chickens, whereas all the chickens receiving mock immunizations succumbed to the disease. Overall, our study concluded the efficacy of biomimetic mineralization of live attenuated vaccine in nanoparticles to improve humoral and cellular immune responses.
Collapse
Affiliation(s)
- Jinjin Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Yanhong Ji
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Zhengxiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Yane Jia
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China.
| |
Collapse
|
5
|
Zhong D, Wang Y, Xie F, Chen S, Yang X, Ma Z, Wang S, Iqbal MZ, Ge J, Zhang Q, Zhao R, Kong X. Biomineralized Prussian Blue Nanotherapeutic for Enhanced Cancer Photothermal Therapy. J Mater Chem B 2022; 10:4889-4896. [DOI: 10.1039/d2tb00775d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal therapy is a promising tumor ablation technique that converts light into heat energy to kill cancer cells. Prussian blue (PB), a biocompatible photothermal reagent, has been widely explored for...
Collapse
|
6
|
A Self-Biomineralized Novel Adenovirus Vectored COVID-19 Vaccine for Boosting Immunization of Mice. Virol Sin 2021; 36:1113-1123. [PMID: 34581961 PMCID: PMC8476980 DOI: 10.1007/s12250-021-00434-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022] Open
Abstract
SARS-CoV-2 has caused more than 3.8 million deaths worldwide, and several types of COVID-19 vaccines are urgently approved for use, including adenovirus vectored vaccines. However, the thermal instability and pre-existing immunity have limited its wide applications. To circumvent these obstacles, we constructed a self-biomineralized adenovirus vectored COVID-19 vaccine (Sad23L-nCoV-S-CaP) by generating a calcium phosphate mineral exterior (CaP) based on Sad23L vector carrying the full-length gene of SARS-CoV-2 spike protein (S) under physiological condition. This Sad23L-nCoV-S-CaP vaccine was examined for its characteristics of structure, thermostability, immunogenicity and avoiding the problem of preexisting immunity. In thermostability test, Sad23L-nCoV-S-CaP could be stored at 4 °C for over 45 days, 26 °C for more than 8 days and 37 °C for approximately 2 days. Furthermore, Sad23L-nCoV-S-CaP induced higher level of S-specific antibody and T cell responses, and was not affected by the pre-existing anti-Sad23L immunity, suggesting it could be used as boosting immunization on Sad23L-nCoV-S priming vaccination. The boosting with Sad23L-nCoV-S-CaP vaccine induced high titers of 105.01 anti-S1, 104.77 anti-S2 binding antibody, 103.04 pseudovirus neutralizing antibody (IC50), and robust T-cell response of IFN-γ (1466.16 SFCs/106 cells) to S peptides, respectively. In summary, the self-biomineralization of the COVID-19 vaccine Sad23L-nCoV-S-CaP improved vaccine efficacy, which could be used in prime-boost regimen for prevention of SARS-CoV-2 infection in humans.
Collapse
|
7
|
Ma Z, Li B, Tang R. Biomineralization: Biomimetic Synthesis of Materials and Biomimetic Regulation of Organisms. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zaiqiang Ma
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Benke Li
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
- Qiushi Academy for Advanced Studies, Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
8
|
Wang Y, Li B, Li Y, Chen X. Research progress on enhancing the performance of autotrophic nitrogen removal systems using microbial immobilization technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145136. [PMID: 33609842 DOI: 10.1016/j.scitotenv.2021.145136] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The autotrophic nitrogen removal process has great potential to be applied to the biological removal of nitrogen from wastewater, but its application is hindered by its unstable operation under adverse environmental conditions, such as those presented by low temperatures, high organic matter concentrations, or the presence of toxic substances. Granules and microbial entrapment technology can effectively retain and enrich microbial assemblages in reactors to improve operating efficiency and reactor stability. The carriers can also protect the reactor's internal microorganisms from interference from the external environment. This article critically reviews the existing literature on autotrophic nitrogen removal systems using immobilization technology. We focus our discussion on the natural aggregation process (granulation) and entrapment technology. The selection of carrier materials and entrapment methods are identified and described in detail and the mechanisms through which entrapment technology protects microorganisms are analyzed. This review will provide a better understanding of the mechanisms through which immobilization operates and the prospects for immobilization technology to be applied in autotrophic nitrogen removal systems.
Collapse
Affiliation(s)
- Yue Wang
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Bolin Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China.
| | - Ye Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiaoguo Chen
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
9
|
Li B, Cui Y, Wang X, Tang R. Novel nanomaterial-organism hybrids with biomedical potential. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1706. [PMID: 33644977 DOI: 10.1002/wnan.1706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/29/2022]
Abstract
Instinctive hierarchically biomineralized structures of various organisms, such as eggs, algae, and magnetotactic bacteria, afford extra protection and distinct performance, which endow fragile organisms with a tenacious ability to adapt and survive. However, spontaneous formation of hybrid materials is difficult for most organisms in nature. Rapid development of chemistry and materials science successfully obtained the combinations of organisms with nanomaterials by biomimetic mineralization thus demonstrating the reproduction of the structures and functions and generation of novel functions that organisms do not possess. The rational design of biomaterial-organism hybridization can control biological recognition, interactions, and metabolism of the organisms. Thus, nanomaterial-organism hybrids represent a next generation of organism engineering with great potential biomedical applications. This review summarizes recent advances in material-directed organism engineering and is mainly focused on biomimetic mineralization technologies and their outstanding biomedical applications. Three representative types of biomimetic mineralization are systematically introduced, including external mineralization, internal mineralization, and genetic engineering mineralization. The methods involving hybridization of nanomaterials and organisms based on biomimetic mineralization strategies are described. These strategies resulted in applications of various nanomaterial-organism hybrids with multiplex functions in cell engineering, cancer treatment, and vaccine improvement. Unlike classical biological approaches, this material-based bioregulation is universal, effective, and inexpensive. In particular, instead of traditional medical solutions, the integration of nanomaterials and organisms may exploit novel strategies to solve current biomedical problems. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Benke Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yihao Cui
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China.,Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Cui Y, Li B, Wang X, Tang R. Organism–Materials Integration: A Promising Strategy for Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yihao Cui
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Benke Li
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
- Qiushi Academy for Advanced Studies Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| |
Collapse
|
11
|
Sahoo PC, Pant D, Kumar M, Puri S, Ramakumar S. Material–Microbe Interfaces for Solar-Driven CO2 Bioelectrosynthesis. Trends Biotechnol 2020; 38:1245-1261. [DOI: 10.1016/j.tibtech.2020.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/05/2023]
|
12
|
López-Laguna H, Sánchez J, Unzueta U, Mangues R, Vázquez E, Villaverde A. Divalent Cations: A Molecular Glue for Protein Materials. Trends Biochem Sci 2020; 45:992-1003. [PMID: 32891514 DOI: 10.1016/j.tibs.2020.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
Among inorganic materials, divalent cations modulate thousands of physiological processes that support life. Their roles in protein assembly and aggregation are less known, although they are progressively being brought to light. We review the structural roles of divalent cations here, as well as the novel protein materials that are under development, in which they are used as glue-like agents. More specifically, we discuss how mechanically stable nanoparticles, fibers, matrices, and hydrogels are generated through their coordination with histidine-rich proteins. We also describe how the rational use of divalent cations combined with simple protein engineering offers unexpected and very simple biochemical approaches to biomaterial design that might address unmet clinical needs in precision medicine.
Collapse
Affiliation(s)
- Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Julieta Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET-Universidad Nacional de Córdoba), ICTA & Cátedra de Química Biológica, Departamento de Química, FCEFyN, X 5016GCA, Córdoba, Argentina
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; Josep Carreras Research Institute, 08041 Barcelona, Spain.
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; Josep Carreras Research Institute, 08041 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
13
|
He L, Chang Y, Zhu J, Bi Y, An W, Dong Y, Liu JH, Wang S. A cytoprotective graphene oxide-polyelectrolytes nanoshell for single-cell encapsulation. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1950-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|