1
|
Kaur G, Kushwah AS. Sodium orthovanadate protects against ulcerative colitis and associated liver damage in mice: insights into modulations of Nrf2/Keap1 and NF-κB pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03335-w. [PMID: 39120720 DOI: 10.1007/s00210-024-03335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Ulcerative colitis (UC) is a prominent category of disease that is associated with bowel inflammation, it can occur at any period of life and is prevalently rising on a global scale. Dextran sulfate sodium (DSS) has been extensively used to develop colitis due to its ability to mimic human UC, providing consistent and reproducible inflammation, ulceration, and disruption of the epithelial barrier in the colon. Chronic inflammation in the gut can lead to alterations in the gut-liver axis, potentially impacting liver function over time, while direct evidence linking diversion colitis to liver damage is limited. Thus, the present study aims to assess the gut and liver damage against DSS and the possible molecular mechanisms. Forty-seven animals were randomly assigned to six groups. Ulcerative colitis was induced using 2.5% w/v DSS in three alternate cycles, each lasting 7 days, with 1-week remission periods in between. SOV (5 and 10 mg/kg, orally) and the standard drug 5-aminosalicylic acid (100 mg/kg, orally) were administered from the start of the 2nd DSS cycle until the end of the experiment. Biochemical parameters, ELISA, histopathological, and immunohistochemical analyses have been conducted to assess damage in the colon and liver. SOV significantly reduced colitis severity by lowering the DAI score, oxidative stress markers (LPS, IL-1β, MPO, nitrite), and restoring liver biomarkers (SGPT, SGOT). Histopathological findings supported these protective benefits in the liver and gut. Moreover, immunohistochemical analysis showed SOV enhanced the expression of the cytoprotective mediator Nrf2/Keap-1 and reduced the expression of inflammatory mediators NF-κB and IL-6. Present findings concluded that SOV demonstrated a dose-dependent effect against UC through anti-inflammatory and antioxidant pathways, with the highest dose of SOV 10 mg/kg having more significant (p < 0.001) results than the low dose of 5 mg/kg.
Collapse
Affiliation(s)
- Gurpreet Kaur
- IK Gujral Punjab Technical University, Kapurthala, 144601, Jalandhar, Punjab, India
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy (An Autonomous College), Bela, 140111, Ropar, Punjab, India
| | - Ajay Singh Kushwah
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy (An Autonomous College), Bela, 140111, Ropar, Punjab, India.
| |
Collapse
|
2
|
Tian S, Ye T, Cheng X. The behavioral, pathological and therapeutic features of the triple transgenic Alzheimer's disease (3 × Tg-AD) mouse model strain. Exp Neurol 2023; 368:114505. [PMID: 37597764 DOI: 10.1016/j.expneurol.2023.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
As a classic animal model of Alzheimer's disease (AD), the 3 × Tg-AD mouse not only recapitulates most of anatomical hallmarks observed in AD pathology but also displays cognitive alterations in memory and learning tasks. The 3 × Tg-AD can better show the two characteristics of AD, amyloid β (Aβ) and neurofibrillary tangles (NFT). Therefore, 3 × Tg-AD strain is widely used in AD pathogenesis research and new drug development of AD. In this paper, the construction methods, pathological changes, and treatment characteristics of 3 × Tg-AD mouse models commonly used in AD research are summarized and commented, hoping to provide reference for researchers to choose and establish experimental patterns.
Collapse
Affiliation(s)
- Sheng Tian
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Tianyuan Ye
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xiaorui Cheng
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| |
Collapse
|
3
|
Yao J, He Z, You G, Liu Q, Li N. The Deficits of Insulin Signal in Alzheimer's Disease and the Mechanisms of Vanadium Compounds in Curing AD. Curr Issues Mol Biol 2023; 45:6365-6382. [PMID: 37623221 PMCID: PMC10453015 DOI: 10.3390/cimb45080402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Vanadium is a well-known essential trace element, which usually exists in oxidation states in the form of a vanadate cation intracellularly. The pharmacological study of vanadium began with the discovery of its unexpected inhibitory effect on ATPase. Thereafter, its protective effects on β cells and its ability in glucose metabolism regulation were observed from the vanadium compound, leading to the application of vanadium compounds in clinical trials for curing diabetes. Alzheimer's disease (AD) is the most common dementia disease in elderly people. However, there are still no efficient agents for treating AD safely to date. This is mainly because of the complexity of the pathology, which is characterized by senile plaques composed of the amyloid-beta (Aβ) protein in the parenchyma of the brain and the neurofibrillary tangles (NFTs), which are derived from the hyperphosphorylated tau protein in the neurocyte, along with mitochondrial damage, and eventually the central nervous system (CNS) atrophy. AD was also illustrated as type-3 diabetes because of the observations of insulin deficiency and the high level of glucose in cerebrospinal fluid (CSF), as well as the impaired insulin signaling in the brain. In this review, we summarize the advances in applicating the vanadium compound to AD treatment in experimental research and point out the limitations of the current study using vanadium compounds in AD treatment. We hope this will help future studies in this field.
Collapse
Affiliation(s)
- Jinyi Yao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Guanying You
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
4
|
Chen H, Tan H, Wan J, Zeng Y, Wang J, Wang H, Lu X. PPAR-γ signaling in nonalcoholic fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol Ther 2023; 245:108391. [PMID: 36963510 DOI: 10.1016/j.pharmthera.2023.108391] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), currently the leading cause of global chronic liver disease, has emerged as a major public health problem, more efficient therapeutics of which are thus urgently needed. Peroxisome proliferator-activated receptor γ (PPAR-γ), ligand-activated transcription factors of the nuclear hormone receptor superfamily, is considered a crucial metabolic regulator of hepatic lipid metabolism and inflammation. The role of PPAR-γ in the pathogenesis of NAFLD is gradually being recognized. Here, we outline the involvement of PPAR-γ in the pathogenesis of NAFLD through adipogenesis, insulin resistance, inflammation, oxidative stress, endoplasmic reticulum stress, and fibrosis. In addition, the evidence for PPAR-γ- targeted therapy for NAFLD are summarized. Altogether, PPAR-γ is a promising therapeutic target for NAFLD, and the development of drugs that can balance the beneficial and undesirable effects of PPAR-γ will bring new light to NAFLD patients.
Collapse
Affiliation(s)
- Hao Chen
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Huabing Tan
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Juan Wan
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine / West China School of Nursing, Sichuan University, Chengdu, China
| | - Yong Zeng
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jincheng Wang
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haichuan Wang
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA.
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
He Z, Zhang H, Li X, Tu S, Wang Z, Han S, Du X, Shen L, Li N, Liu Q. The protective effects of Esculentoside A through AMPK in the triple transgenic mouse model of Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154555. [PMID: 36610160 DOI: 10.1016/j.phymed.2022.154555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Neurofibrillary tangles comprising hyperphosphorylated tau are vital factors associated with the pathogenesis of Alzheimer's disease (AD). The elimination or reduction of hyperphosphorylated and abnormally aggregated tau is a valuable measure in AD therapy. Esculentoside A (EsA), isolated from Phytolacca esculenta, exhibits pharmacotherapeutic efficacy in mice with amyloid beta-induced AD. However, whether EsA affects tau pathology and its specific mechanism of action in AD mice remains unclear. PURPOSE To investigate the roles and mechanisms of EsA in cognitive decline and tau pathology in a triple transgenic AD (3 × Tg-AD) mouse model. METHODS EsA (5 and 10 mg/kg) was administered via intraperitoneal injection to 8-month-old AD mice for eight consecutive weeks. Y-maze and novel object recognition tasks were used to evaluate the cognitive abilities of mice. Potential signaling pathways and targets in EsA-treated AD mice were assessed using quantitative proteomic analysis. The NFT levels and hippocampal synapse numbers were investigated using Gallyas-Braak silver staining and transmission electron microscopy, respectively. Western blotting and immunofluorescence assays were used to measure the expression of tau-associated proteins. RESULTS EsA administration attenuated memory and recognition deficits and synaptic damage in AD mice. Isobaric tags for relative and absolute quantitation proteomic analysis of the mouse hippocampus revealed that EsA modulated the expression of some critical proteins, including brain-specific angiogenesis inhibitor 3, galectin-1, and Ras-related protein 24, whose biological roles are relevant to synaptic function and autophagy. Further research revealed that EsA upregulated AKT/GSK3β activity, in turn, inhibited tau hyperphosphorylation and promoted autophagy to clear abnormally phosphorylated tau. In hippocampus-derived primary neurons, inhibiting AMP-activated protein kinase (AMPK) activity through dorsomorphin could eliminate the effect of EsA, as revealed by increased tau hyperphosphorylation, downregulated activity AKT/GSK3β, and blocked autophagy. CONCLUSIONS To our knowledge, this study is the first to demonstrate that EsA attenuates cognitive decline by targeting the pathways of both tau hyperphosphorylation and autophagic clearance in an AMPK-dependent manner and it shows a high reference value in AD pharmacotherapy research.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Sixin Tu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zi Wang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Shuangxue Han
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|
6
|
The Strategies for Treating "Alzheimer's Disease": Insulin Signaling May Be a Feasible Target. Curr Issues Mol Biol 2022; 44:6172-6188. [PMID: 36547082 PMCID: PMC9777526 DOI: 10.3390/cimb44120421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by senile plaques formed by amyloid-beta (Aβ) extracellularly and neurofibrillary tangles (NFTs) formed by hyperphosphorylated tau protein intracellularly. Apart from these two features, insulin deficiency and insulin resistance have also been observed in AD brains. Thus, AD has also been referred to as type 3 diabetes by some of the scientists in this field. Insulin plays a pivotal role in learning and memory and is involved in regulating tau phosphorylation though the PI3KAkt-GSK3b signaling pathway. Interestingly, recent studies revealed that in AD brains the microglia transformed into a disease-associated microglia (DAM) status in a TREM2-dependent manner to restrain the toxicity of Aβ and propagation of tau. This also correlated with PI3K-Akt signaling through the adaptor of TREM2. Whether insulin has any effect on microglia activation in AD pathology is unclear so far. However, many studies demonstrated that diabetes increased the risk of AD. In this review, we summarize the main strategies for curing AD, including lowering the level of Aβ, suppressing the phosphorylation of tau, the ablation and/or repopulation of microglia, and especially the supply of insulin. We also propose that attention should be given to the influences of insulin on microglia in AD.
Collapse
|
7
|
Wang Y, Chen R, Li J, Zeng G, Yuan J, Su J, Wu C, Lu Z, Zhang F, Ding W. Vanadium(IV)-Chlorodipicolinate Protects against Hepatic Steatosis by Ameliorating Lipid Peroxidation, Endoplasmic Reticulum Stress, and Inflammation. Antioxidants (Basel) 2022; 11:antiox11061093. [PMID: 35739990 PMCID: PMC9220021 DOI: 10.3390/antiox11061093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is increasingly prevalent and represents a growing challenge in terms of prevention and treatment. The aim of this study is to investigate the protective effects and the underlying mechanisms of vanadium(IV)-chlorodipicolinate ([VIVO(dipic-Cl)(H2O)2, VOdipic-Cl]) in a mouse model of NAFLD induced by a high-fat diet (HFD). VOdipic-Cl (10 mg/kg/day body weight) treatment for 4 weeks significantly controlled body weight gain, and effectively reduced the increase in serum and hepatic triglyceride (TG) and total cholesterol (TC) levels, mitigated pathological injury, decreased malondialdehyde (MDA) level, and inhibited endoplasmic reticulum (ER) stress and inflammatory response in the livers of C57BL/6 obese mice. Moreover, RNA-sequencing analysis revealed distinct transcriptional profiles with differentially expressed genes (DEGs) in livers. We found that VOdipic-Cl effectively down-regulated genes related to lipid synthesis and up-regulated genes related to fatty acid transport and lipolysis, and down-regulated the expression of genes related to ER stress and immune response in the livers of obese mice. In conclusion, VOdipic-Cl effectively prevented hepatic steatosis by controlling body weight, mitigating oxidative stress, and regulating the expression of genes related to lipid metabolism, ER stress and immune response, which provides new insights into the molecular mechanism of the protective effect of VOdipic-Cl against hepatic steatosis.
Collapse
|