1
|
Lee CY, Park BM, Kim TW, Lee SH. Clinical Implication of Mid-Range Dynamic Instability in Lumbar Degenerative Spondylolisthesis. Asian Spine J 2020; 14:507-512. [PMID: 32693441 PMCID: PMC7435300 DOI: 10.31616/asj.2020.0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/22/2020] [Indexed: 11/23/2022] Open
Abstract
STUDY DESIGN Retrospective evaluation. PURPOSE To determine the prevalence of mid-range dynamic instability in patients with degenerative spondylolisthesis (DS) and to evaluate the clinical implication of mid-range instability (MI). OVERVIEW OF LITERATURE Instability is identified by measuring vertebral body anterior-posterior translation on static end-range flexion and extension lateral radiographs. Mid-range kinematics could evince occult dynamic instability in which motion is not appreciated at the terminal-range of motion. METHODS In this study, 30 patients with DS with checked standing dynamic radiographs of the lumbar spine in Gwangmyeong Sungae Orthopedic Clinic were recruited. Standing lateral radiographs were evaluated in extension, 45° of flexion (mid-range) and 90° of flexion (terminal-range) of the lumbar spine. Instability was defined as sagittal translation greater than 3 mm from the extension position. Patients were divided into three groups: a control group, an MI group, and a terminal-range instability (TI) group. Radiographic outcome (stenosis grade) and clinical outcome were compared between the three groups. RESULTS The average sagittal translation of the lumbar spine was 5.2 mm in extension, 6.6 mm in mid-range, and 7.2 mm in endrange. MI was observed in eight patients (26.2%) and TI was seen in 12 patients (40%). Of eight patients with MI, three patients did not have instability at terminal-range (occult patients) and five patients had instability at terminal-range (typical patients). Body weight and body mass index (BMI) was significantly higher in the MI group as compared to the control group. BMI was positively correlated with slippage to mid-range. There was no significant difference in stenosis grade, Visual Analog Scale, and Oswestry Disability Index. In the TI group, there was no significant difference in radiographic clinical parameters as compared to the control group. CONCLUSIONS MI was demonstrated in 25% of DS patients. Mid-range motion was increased with BMI. Mid-range lateral radiography can reveal occult instability in patients with DS, particularly in obese patients.
Collapse
Affiliation(s)
- Chang-Yk Lee
- Department of Orthopedic Surgery, Lee Chun-Tek Orthopedic Specialty Hospital, Suwon, Korea
| | - Byeong-Mun Park
- Department of Orthopaedic Surgery, Gwangmyeong Sungae Hospital, Gwangmyeong, Korea
| | - Tae-Woo Kim
- Department of Orthopaedic Surgery, Gwangmyeong Sungae Hospital, Gwangmyeong, Korea
| | - Seung-Hwan Lee
- Department of Orthopaedic Surgery, Gwangmyeong Sungae Hospital, Gwangmyeong, Korea
| |
Collapse
|
2
|
Kinematics of the Spine Under Healthy and Degenerative Conditions: A Systematic Review. Ann Biomed Eng 2019; 47:1491-1522. [DOI: 10.1007/s10439-019-02252-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2019] [Indexed: 01/05/2023]
|
3
|
ISSLS PRIZE IN BIOENGINEERING SCIENCE 2018: dynamic imaging of degenerative spondylolisthesis reveals mid-range dynamic lumbar instability not evident on static clinical radiographs. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:752-762. [PMID: 29470715 DOI: 10.1007/s00586-018-5489-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 10/18/2022]
Abstract
PURPOSE Degenerative spondylolisthesis (DS) in the setting of symptomatic lumbar spinal stenosis is commonly treated with spinal fusion in addition to decompression with laminectomy. However, recent studies have shown similar clinical outcomes after decompression alone, suggesting that a subset of DS patients may not require spinal fusion. Identification of dynamic instability could prove useful for predicting which patients are at higher risk of post-laminectomy destabilization necessitating fusion. The goal of this study was to determine if static clinical radiographs adequately characterize dynamic instability in patients with lumbar degenerative spondylolisthesis (DS) and to compare the rotational and translational kinematics in vivo during continuous dynamic flexion activity in DS versus asymptomatic age-matched controls. METHODS Seven patients with symptomatic single level lumbar DS (6 M, 1 F; 66 ± 5.0 years) and seven age-matched asymptomatic controls (5 M, 2 F age 63.9 ± 6.4 years) underwent biplane radiographic imaging during continuous torso flexion. A volumetric model-based tracking system was used to track each vertebra in the radiographic images using subject-specific 3D bone models from high-resolution computed tomography (CT). In vivo continuous dynamic sagittal rotation (flexion/extension) and AP translation (slip) were calculated and compared to clinical measures of intervertebral flexion/extension and AP translation obtained from standard lateral flexion/extension radiographs. RESULTS Static clinical radiographs underestimate the degree of AP translation seen on dynamic in vivo imaging (1.0 vs 3.1 mm; p = 0.03). DS patients demonstrated three primary motion patterns compared to a single kinematic pattern in asymptomatic controls when analyzing continuous dynamic in vivo imaging. 3/7 (42%) of patients with DS demonstrated aberrant mid-range motion. CONCLUSION Continuous in vivo dynamic imaging in DS reveals a spectrum of aberrant motion with significantly greater kinematic heterogeneity than previously realized that is not readily seen on current clinical imaging. LEVEL OF EVIDENCE Level V data These slides can be retrieved under Electronic Supplementary Material.
Collapse
|
4
|
Landi A, Gregori F, Marotta N, Donnarumma P, Delfini R. Hidden spondylolisthesis: unrecognized cause of low back pain? Prospective study about the use of dynamic projections in standing and recumbent position for the individuation of lumbar instability. Neuroradiology 2015; 57:583-8. [PMID: 25808123 DOI: 10.1007/s00234-015-1513-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Dynamic X-rays (DXR) are widely recognized as an effective method to detect lumbar instability (LI). They are usually performed with the patient in standing position (SDXR). In our opinion, standing position inhibits micromovements of the lumbar segment interested by the listhesis, thanks to paravertebral muscles antalgic contraction and augmented tone. We aim to demonstrate that DXR in recumbent position (RDXR), reducing the action of paravertebral muscles, can discover hypermovements not evidenced in SDXR. METHODS Between January 2011 and January 2013, we studied 200 consecutive patients with lumbar degenerative disease with MRI, SDXR, and RDXR. We aimed to find a correlation between low back or radicular pain and the presence of a spondylolisthesis not showed by the SDXR, but showed by the RDXR. RESULTS We analysed 200 patients: of the 133 not pathologic in SDXR, 43 patients (32.3 %) showed an hypermovement in RDXR (p = 0.0001) without any significant correlation between hidden listhesis and age, sex, or level involved. CONCLUSIONS The aim of our study is to determine whether in patients with lumbalgy without evidence of listhesis in SDXR, pain can be attributed to a faccettal syndrome or to a spondylolisthesis. Consequence of pain is augmented muscular tone of the paravertebral musculature, particularly in standing position. Augmented muscular tone tries to inhibit the pain generator, attempting to limit the slippage of the involved segment. In patients examined in RDXR, the tone of paravertebral musculature is reduced, showing the hidden spondylolisthesis.
Collapse
Affiliation(s)
- Alessandro Landi
- Department of Neurology and Psychiatry, Division of Neurosurgery, "Sapienza" University of Rome - Policlinico Umberto I, viale del Policlinico 155, 00181, Rome, Italy,
| | | | | | | | | |
Collapse
|
5
|
Spontaneous reduction finding: magnetic resonance imaging evaluation of segmental instability in spondylolisthesis. Asian Spine J 2013; 6:221-6. [PMID: 23275804 PMCID: PMC3530695 DOI: 10.4184/asj.2012.6.4.221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 09/20/2012] [Accepted: 09/27/2012] [Indexed: 11/08/2022] Open
Abstract
STUDY DESIGN Retrospective chart review. PURPOSE To assess whether spontaneous reduction of spondylolisthesis, as seen on magnetic resonance imaging (MRI), is related to the degree of segmental instability and low back pain. OVERVIEW OF LITERATURE The flexion-extension radiographs obtained in the sagittal plane are frequently used when segmental instability of spondylolisthesis is evaluated. METHODS We retrospectively reviewed 137 patients and measured the differences of the percentage of sagittal translation and sagittal angulation to determine the segmental instability between the flexion and extension radiographs, and the spontaneous reduction on MRI. We then compared the degrees of segmental instability and the degrees of spontaneous reduction. To assess the effect of low back pain on segmental motion in regards to the flexion-extension radiographs, we compared the preoperative visual analogue scales (VAS) score for low back pain between the more and the less spontaneous reduction groups. RESULTS The mean degree of spontaneous reduction was 5.2%. A statistically significant correlation was found between the sagittal translation on the flexion-extension radiographs and the degree of spontaneous reduction (r = 0.557, p < 0.001) and between the sagittal angulation on the flexion-extension radiographs and the degree of spontaneous reduction (r = 0.215, p = 0.012). The preoperative VAS scores for low back pain of the more spontaneous reduction group and the less spontaneous reduction group were 4.6 and 3.6 points, respectively, and this difference was statistically significant (p = 0.002). CONCLUSIONS Spontaneous reduction of spondylolisthesis on MRI was found to be closely related to segmental instability, and the degree of spontaneous reduction seen on MRI could be useful for the evaluation of segmental instability in patients with spondylolisthesis, especially with severe low back pain.
Collapse
|
6
|
Breen AC, Teyhen DS, Mellor FE, Breen AC, Wong KWN, Deitz A. Measurement of intervertebral motion using quantitative fluoroscopy: report of an international forum and proposal for use in the assessment of degenerative disc disease in the lumbar spine. Adv Orthop 2012; 2012:802350. [PMID: 22666606 PMCID: PMC3362008 DOI: 10.1155/2012/802350] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/26/2012] [Indexed: 01/03/2023] Open
Abstract
Quantitative fluoroscopy (QF) is an emerging technology for measuring intervertebral motion patterns to investigate problem back pain and degenerative disc disease. This International Forum was a networking event of three research groups (UK, US, Hong Kong), over three days in San Francisco in August 2009. Its aim was to reach a consensus on how best to record, analyse, and communicate QF information for research and clinical purposes. The Forum recommended that images should be acquired during regular trunk motion that is controlled for velocity and range, in order to minimise externally imposed variability as well as to correlate intervertebral motion with trunk motion. This should be done in both the recumbent passive and weight bearing active patient configurations. The main recommended outputs from QF were the true ranges of intervertebral rotation and translation, neutral zone laxity and the consistency of shape of the motion patterns. The main clinical research priority should initially be to investigate the possibility of mechanical subgroups of patients with chronic, nonspecific low back pain by comparing their intervertebral motion patterns with those of matched healthy controls.
Collapse
Affiliation(s)
- Alan C. Breen
- Institute for Musculoskeletal Research and Clinical Implementation, Anglo-European College of Chiropractic, 13-15 Parkwood Road, Bournemouth BH5 2DF, UK
| | - Deydre S. Teyhen
- Fort Sam Houston, US Army-Baylor University, San Antonio, TX 78234, USA
| | - Fiona E. Mellor
- Institute for Musculoskeletal Research and Clinical Implementation, Anglo-European College of Chiropractic, 13-15 Parkwood Road, Bournemouth BH5 2DF, UK
| | - Alexander C. Breen
- Institute for Musculoskeletal Research and Clinical Implementation, Anglo-European College of Chiropractic, 13-15 Parkwood Road, Bournemouth BH5 2DF, UK
| | - Kris W. N. Wong
- Faculty of Science & Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong
| | - Adam Deitz
- Ortho Kinematics Inc., 1704 Bee Caves Road, Building 3, Suite 315, Austin, TX 78746, USA
| |
Collapse
|
7
|
Passias PG, Wang S, Kozanek M, Xia Q, Li W, Grottkau B, Wood KB, Li G. Segmental lumbar rotation in patients with discogenic low back pain during functional weight-bearing activities. J Bone Joint Surg Am 2011; 93:29-37. [PMID: 21209266 PMCID: PMC3004094 DOI: 10.2106/jbjs.i.01348] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Little information is available on vertebral motion in patients with discogenic low back pain under physiological conditions. We previously validated a combined dual fluoroscopic and magnetic resonance imaging system to investigate in vivo lumbar kinematics. The purpose of the present study was to characterize mechanical dysfunction among patients with confirmed discogenic low back pain, relative to asymptomatic controls without degenerative disc disease, by quantifying abnormal vertebral motion. METHODS Ten subjects were recruited for the present study. All patients had discogenic low back pain confirmed clinically and radiographically at L4-L5 and L5-S1. Motions were reproduced with use of the combined imaging technique during flexion-extension, left-to-right bending, and left-to-right twisting movements. From local coordinate systems at the end plates, relative motions of the cephalad vertebrae with respect to caudad vertebrae were calculated at each of the segments from L2 to S1. Range of motion of the primary rotations and coupled translations and rotations were determined. RESULTS During all three movements, the greatest range of motion was observed at L3-L4. L3-L4 had significantly greater motion than L2-L3 with left-right bending and left-right twisting movements (p < 0.05). The least motion occurred at L5-S1 for all movements; the motion at this level was significantly smaller than that at L3-L4 (p < 0.05). Range of motion during left-right bending and left-right twisting at L3-L4 was significantly larger in the degenerative disc disease group than in the normal group. The range of motion at L4-L5 was significantly larger in the degenerative group than in the normal group during flexion; however, the ranges of motion in both groups were similar during left-to-right bending and left-to-right twisting. CONCLUSIONS The greatest range of motion in patients with discogenic back pain was observed at L3-L4; this motion was greater than that in normal subjects, suggesting that superior adjacent levels developed segmental hypermobility prior to undergoing fusion. L5-S1 had the least motion, suggesting that segmental hypomobility ensues at this level in patients with discogenic low back pain.
Collapse
Affiliation(s)
- Peter G. Passias
- Bioengineering Laboratory, Department of Orthopaedic
Surgery, Massachusetts General Hospital, 1215 GRJ, 55 Fruit Street, Boston, MA
02114. E-mail address for P.G. Passias:
| | - Shaobai Wang
- Bioengineering Laboratory, Department of Orthopaedic
Surgery, Massachusetts General Hospital, 1215 GRJ, 55 Fruit Street, Boston, MA
02114. E-mail address for P.G. Passias:
| | - Michal Kozanek
- Bioengineering Laboratory, Department of Orthopaedic
Surgery, Massachusetts General Hospital, 1215 GRJ, 55 Fruit Street, Boston, MA
02114. E-mail address for P.G. Passias:
| | - Qun Xia
- Bioengineering Laboratory, Department of Orthopaedic
Surgery, Massachusetts General Hospital, 1215 GRJ, 55 Fruit Street, Boston, MA
02114. E-mail address for P.G. Passias:
| | - Weishi Li
- Bioengineering Laboratory, Department of Orthopaedic
Surgery, Massachusetts General Hospital, 1215 GRJ, 55 Fruit Street, Boston, MA
02114. E-mail address for P.G. Passias:
| | - Brian Grottkau
- Bioengineering Laboratory, Department of Orthopaedic
Surgery, Massachusetts General Hospital, 1215 GRJ, 55 Fruit Street, Boston, MA
02114. E-mail address for P.G. Passias:
| | - Kirkham B. Wood
- Bioengineering Laboratory, Department of Orthopaedic
Surgery, Massachusetts General Hospital, 1215 GRJ, 55 Fruit Street, Boston, MA
02114. E-mail address for P.G. Passias:
| | - Guoan Li
- Bioengineering Laboratory, Department of Orthopaedic
Surgery, Massachusetts General Hospital, 1215 GRJ, 55 Fruit Street, Boston, MA
02114. E-mail address for P.G. Passias:
| |
Collapse
|
8
|
Ahmadi A, Maroufi N, Behtash H, Zekavat H, Parnianpour M. Kinematic analysis of dynamic lumbar motion in patients with lumbar segmental instability using digital videofluoroscopy. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2010; 18:1677-85. [PMID: 19727854 DOI: 10.1007/s00586-009-1147-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 06/22/2009] [Accepted: 08/16/2009] [Indexed: 11/26/2022]
Abstract
The study design is a prospective, case-control. The aim of this study was to develop a reliable measurement technique for the assessment of lumbar spine kinematics using digital video fluoroscopy in a group of patients with low back pain (LBP) and a control group. Lumbar segmental instability (LSI) is one subgroup of nonspecific LBP the diagnosis of which has not been clarified. The diagnosis of LSI has traditionally relied on the use of lateral functional (flexion-extension) radiographs but use of this method has proven unsatisfactory.Fifteen patients with chronic low back pain suspected to have LSI and 15 matched healthy subjects were recruited. Pulsed digital videofluoroscopy was used to investigate kinematics of lumbar motion segments during flexion and extension movements in vivo. Intersegmental linear translation and angular displacement, and pathway of instantaneous center of rotation (PICR) were calculated for each lumbar motion segment. Movement pattern of lumbar spine between two groups and during the full sagittal plane range of motion were analyzed using ANOVA with repeated measures design. Intersegmental linear translation was significantly higher in patients during both flexion and extension movements at L5-S1 segment (p < 0.05). Arc length of PICR was significantly higher in patients for L1-L2 and L5-S1 motion segments during extension movement (p < 0.05). This study determined some kinematic differences between two groups during the full range of lumbar spine. Devices, such as digital videofluoroscopy can assist in identifying better criteria for diagnosis of LSI in otherwise nonspecific low back pain patients in hope of providing more specific treatment.
Collapse
Affiliation(s)
- Amir Ahmadi
- Faculty of Rehabilitation, Iran University of Medical Sciences, P.O. Box 15875-4391, Tehran, Iran.
| | | | | | | | | |
Collapse
|
9
|
Lam SCB, Allen R, Pearson G, Cooper C. Parametric characterization of spinal motions in osteoporotic vertebral fracture at level T12 with fluoroscopy. Med Eng Phys 2008; 31:346-55. [PMID: 18614385 DOI: 10.1016/j.medengphy.2008.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 05/24/2008] [Accepted: 06/01/2008] [Indexed: 10/21/2022]
Abstract
Vertebral fractures due to osteoporosis are a common skeletal disorder affecting the mobility of the patients, although little is known about the relationship between spinal kinematics and osteoporotic fracture. The purpose of this study was to characterize the motions of the thoracolumbar spine affected by osteoporotic vertebral fracture at level T12 and compare the results with those of non-fracture osteoporosis subjects. We examined the continuous segmental kinematics of the vertebrae, and describe the segmental motion of the spine when a fracture at T12 is present. Fluoroscopy sequences of the thoracolumbar spines during sagittal and lateral flexion were collected from 16 subjects with osteoporosis of their spine (6 with vertebral fractures at T12, 10 without a fracture). Vertebrae T10-L2 in each frame of the sequences were landmarked. Kinematic parameters were calculated based on the landmarks and motion graphs were constructed. Compared to the control subjects who did not have a fracture, fracture subjects had a more asymmetric lateral range of motion (RoM) and required a longer time to complete certain phases of the motion cycle which are parameterized as lateral flexion ratio and percentage of motion cycle, respectively. Prolonged deflection was more frequently found from the fracture group. Characterizing the motions of the fractured vertebra together with its neighboring vertebrae with these kinematic parameters is useful in quantifying the dysfunction and may be a valuable aid to tracking progress of treatment.
Collapse
Affiliation(s)
- Shing Chun Benny Lam
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | | | | | | |
Collapse
|
10
|
Teyhen DS, Flynn TW, Childs JD, Kuklo TR, Rosner MK, Polly DW, Abraham LD. Fluoroscopic video to identify aberrant lumbar motion. Spine (Phila Pa 1976) 2007; 32:E220-9. [PMID: 17414897 DOI: 10.1097/01.brs.0000259206.38946.cb] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective, case-control design. OBJECTIVES To develop a kinematic model that characterizes frequently observed movement patterns in patients with low back pain (LBP). SUMMARY OF BACKGROUND DATA Understanding arthrokinematics of lumbar motion in those with LBP may provide further understanding of this condition. METHODS Digital fluoroscopic video (DFV) was used to quantify the magnitude and rate of attainment of sagittal plane intersegmental angular and linear displacement from 20 individuals with LBP and 20 healthy control subjects during lumbar flexion and extension. Three fellowship-trained spine surgeons subsequently qualitatively analyzed the DFVs to determine normality of movement. Final classification was based on agreement between their symptom and motion status (11 with LBP and aberrant motion and 14 healthy controls without aberrant motion). Independent t tests, receiver operator characteristic curves, and accuracy statistics were calculated to determine the most parsimonious set of kinematic variables able to distinguish patients with LBP. RESULTS Eight kinematic variables had a positive likelihood ratio > or = 2.5 and entered the model. Six of the variables described a disruption in the rate of attainment of angular or linear displacement during midrange postures. When 4 or more of these variables were present, the positive likelihood ratio was 14.0 (confidence interval 3.2-78.5), resulting in accurately identifying 96% of participants. CONCLUSIONS DFV was useful for discriminating between individuals with and without LBP based on kinematic parameters. Disruptions in how the motion occurred during midrange motions were more diagnostic for LBP than range of motion variables. Cross validation of the model is required.
Collapse
Affiliation(s)
- Deydre S Teyhen
- U.S. Army-Baylor University Doctoral Program in Physical Therapy, Fort Sam Houston, TX 78234, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Teyhen DS, Flynn TW, Childs JD, Abraham LD. Arthrokinematics in a subgroup of patients likely to benefit from a lumbar stabilization exercise program. Phys Ther 2007; 87:313-25. [PMID: 17311885 DOI: 10.2522/ptj.20060253] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE A clinical prediction rule (CPR) has been reported to identify patients with low back pain who are likely to benefit from stabilization exercises. The aim of this study was to characterize the spinal motion, using digital fluoroscopic video, of a subgroup of subjects with low back pain. SUBJECTS Twenty subjects who were positive on the CPR were compared with 20 control subjects who were healthy. METHODS The magnitude and timing of lumbar sagittal-plane intersegmental angular and linear displacement were assessed. Receiver operating characteristic curves and accuracy statistics were used to develop a kinematic model. RESULTS A 10-variable model was developed that could distinguish group membership. Seven of these variables described a disruption in timing of angular or linear displacement during mid-range movements. None of the variables suggested hypermobility. DISCUSSION AND CONCLUSION The findings suggest that individuals with mid-range aberrant motion without signs of hypermobility are likely to benefit from these exercises. The developed model describes altered kinematics of this subgroup of subjects and helps to provide construct validity for the developed CPR.
Collapse
Affiliation(s)
- Deydre S Teyhen
- US Army-Baylor Doctoral Program in Physical Therapy, MCCS/HMT, 3151 Scott Rd, Room 1303, Fort Sam Houston, TX 78234-6138, USA.
| | | | | | | |
Collapse
|