1
|
Hart DA, Ahmed AS, Chen J, Ackermann PW. Optimizing tendon repair and regeneration: how does the in vivo environment shape outcomes following rupture of a tendon such as the Achilles tendon? Front Bioeng Biotechnol 2024; 12:1357871. [PMID: 38433820 PMCID: PMC10905747 DOI: 10.3389/fbioe.2024.1357871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Risk for rupture of the Achilles tendon, and other tendons increases with age. Such injuries of tissues that function in high load environments generally are believed to heal with variable outcome. However, in many cases, the healing does not lead to a good outcome and the patient cannot return to the previous level of participation in active living activities, including sports. In the past few years, using proteomic approaches and other biological techniques, reports have appeared that identify biomarkers that are prognostic of good outcomes from healing, and others that are destined for poor outcomes using validated criteria at 1-year post injury. This review will discuss some of these recent findings and their potential implications for improving outcomes following connective tissue injuries, as well as implications for how clinical research and clinical trials may be conducted in the future where the goal is to assess the impact of specific interventions on the healing process, as well as focusing the emphasis on regeneration and not just repair.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Aisha S. Ahmed
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Junyu Chen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Paul W. Ackermann
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Mousavizadeh R, West VC, Inguito KL, Elliott DM, Parreno J. The application of mechanical load onto mouse tendons by magnetic restraining represses Mmp-3 expression. BMC Res Notes 2023; 16:127. [PMID: 37391824 PMCID: PMC10314558 DOI: 10.1186/s13104-023-06413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
OBJECTIVES Mechanical loading is crucial for tendon matrix homeostasis. Under-stimulation of tendon tissue promotes matrix degradation and ultimately tendon failure. In this study, we examined the expression of tendon matrix molecules and matrix-degrading enzymes (matrix metalloproteinases) in stress-deprived tail tendons and compared to tendons that were mechanically loaded by a simple restraining method. DATA DESCRIPTION Isolated mouse tail fascicles were either floated or restrained by magnets in cell culture media for 24 h. The gene expression of tendon matrix molecules and matrix metalloproteinases in the tendon fascicles of mouse tails were examined by real-time RT-PCR. Stress deprivation of tail tendons increase Mmp3 mRNA levels. Restraining tendons represses these increases in Mmp3. The gene expression response to restraining was specific to Mmp3 at 24 h as we did not observe mRNA level changes in other matrix related genes that we examined (Col1, Col3, Tnc, Acan, and Mmp13). To elucidate, the mechanisms that may regulate load transmission in tendon tissue, we examined filamentous (F-)actin staining and nuclear morphology. As compared to stress deprived tendons, restrained tendons had greater staining for F-actin. The nuclei of restrained tendons are smaller and more elongated. These results indicate that mechanical loading regulates specific gene expression potentially through F-actin regulation of nuclear morphology. A further understanding on the mechanisms involved in regulating Mmp3 gene expression may lead to new strategies to prevent tendon degeneration.
Collapse
Affiliation(s)
- Rouhollah Mousavizadeh
- Department of Physical Therapy, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Valerie C West
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Kameron L Inguito
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Justin Parreno
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
3
|
Homo sapiens—A Species Not Designed for Space Flight: Health Risks in Low Earth Orbit and Beyond, Including Potential Risks When Traveling beyond the Geomagnetic Field of Earth. Life (Basel) 2023; 13:life13030757. [PMID: 36983912 PMCID: PMC10051707 DOI: 10.3390/life13030757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Homo sapiens and their predecessors evolved in the context of the boundary conditions of Earth, including a 1 g gravity and a geomagnetic field (GMF). These variables, plus others, led to complex organisms that evolved under a defined set of conditions and define how humans will respond to space flight, a circumstance that could not have been anticipated by evolution. Over the past ~60 years, space flight and living in low Earth orbit (LEO) have revealed that astronauts are impacted to varying degrees by such new environments. In addition, it has been noted that astronauts are quite heterogeneous in their response patterns, indicating that such variation is either silent if one remained on Earth, or the heterogeneity unknowingly contributes to disease development during aging or in response to insults. With the planned mission to deep space, humans will now be exposed to further risks from radiation when traveling beyond the influence of the GMF, as well as other potential risks that are associated with the actual loss of the GMF on the astronauts, their microbiomes, and growing food sources. Experimental studies with model systems have revealed that hypogravity conditions can influence a variety biological and physiological systems, and thus the loss of the GMF may have unanticipated consequences to astronauts’ systems, such as those that are electrical in nature (i.e., the cardiovascular system and central neural systems). As astronauts have been shown to be heterogeneous in their responses to LEO, they may require personalized countermeasures, while others may not be good candidates for deep-space missions if effective countermeasures cannot be developed for long-duration missions. This review will discuss several of the physiological and neural systems that are affected and how the emerging variables may influence astronaut health and functioning.
Collapse
|
4
|
Hart DA, Zernicke RF, Shrive NG. Homo sapiens May Incorporate Daily Acute Cycles of “Conditioning–Deconditioning” to Maintain Musculoskeletal Integrity: Need to Integrate with Biological Clocks and Circadian Rhythm Mediators. Int J Mol Sci 2022; 23:ijms23179949. [PMID: 36077345 PMCID: PMC9456265 DOI: 10.3390/ijms23179949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Human evolution required adaptation to the boundary conditions of Earth, including 1 g gravity. The bipedal mobility of Homo sapiens in that gravitational field causes ground reaction force (GRF) loading of their lower extremities, influencing the integrity of the tissues of those extremities. However, humans usually experience such loading during the day and then a period of relative unloading at night. Many studies have indicated that loading of tissues and cells of the musculoskeletal (MSK) system can inhibit their responses to biological mediators such as cytokines and growth factors. Such findings raise the possibility that humans use such cycles of acute conditioning and deconditioning of the cells and tissues of the MSK system to elaborate critical mediators and responsiveness in parallel with these cycles, particularly involving GRF loading. However, humans also experience circadian rhythms with the levels of a number of mediators influenced by day/night cycles, as well as various levels of biological clocks. Thus, if responsiveness to MSK-generated mediators also occurs during the unloaded part of the daily cycle, that response must be integrated with circadian variations as well. Furthermore, it is also possible that responsiveness to circadian rhythm mediators may be regulated by MSK tissue loading. This review will examine evidence for the above scenario and postulate how interactions could be both regulated and studied, and how extension of the acute cycles biased towards deconditioning could lead to loss of tissue integrity.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone & Joint Health Research, University of Calgary, Calgary, AB T2N 4N1, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
- Correspondence:
| | - Ronald F. Zernicke
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109-5328, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48108-1048, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2099, USA
| | - Nigel G. Shrive
- Department of Surgery, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone & Joint Health Research, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 4V8, Canada
| |
Collapse
|
5
|
Hart DA, Nakamura N. Creating an Optimal In Vivo Environment to Enhance Outcomes Using Cell Therapy to Repair/Regenerate Injured Tissues of the Musculoskeletal System. Biomedicines 2022; 10:1570. [PMID: 35884875 PMCID: PMC9313221 DOI: 10.3390/biomedicines10071570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Following most injuries to a musculoskeletal tissue which function in unique mechanical environments, an inflammatory response occurs to facilitate endogenous repair. This is a process that usually yields functionally inferior scar tissue. In the case of such injuries occurring in adults, the injury environment no longer expresses the anabolic processes that contributed to growth and maturation. An injury can also contribute to the development of a degenerative process, such as osteoarthritis. Over the past several years, researchers have attempted to use cellular therapies to enhance the repair and regeneration of injured tissues, including Platelet-rich Plasma and mesenchymal stem/medicinal signaling cells (MSC) from a variety of tissue sources, either as free MSC or incorporated into tissue engineered constructs, to facilitate regeneration of such damaged tissues. The use of free MSC can sometimes affect pain symptoms associated with conditions such as OA, but regeneration of damaged tissues has been challenging, particularly as some of these tissues have very complex structures. Therefore, implanting MSC or engineered constructs into an inflammatory environment in an adult may compromise the potential of the cells to facilitate regeneration, and neutralizing the inflammatory environment and enhancing the anabolic environment may be required for MSC-based interventions to fulfill their potential. Thus, success may depend on first eliminating negative influences (e.g., inflammation) in an environment, and secondly, implanting optimally cultured MSC or tissue engineered constructs into an anabolic environment to achieve the best outcomes. Furthermore, such interventions should be considered early rather than later on in a disease process, at a time when sufficient endogenous cells remain to serve as a template for repair and regeneration. This review discusses how the interface between inflammation and cell-based regeneration of damaged tissues may be at odds, and outlines approaches to improve outcomes. In addition, other variables that could contribute to the success of cell therapies are discussed. Thus, there may be a need to adopt a Precision Medicine approach to optimize tissue repair and regeneration following injury to these important tissues.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
| | - Norimasa Nakamura
- Institute of Medical Science in Sport, Osaka Health Science University, 1-9-27 Tenma, Kita-ku, Osaka 530-0043, Japan;
| |
Collapse
|
6
|
Hart DA. Learning From Human Responses to Deconditioning Environments: Improved Understanding of the "Use It or Lose It" Principle. Front Sports Act Living 2021; 3:685845. [PMID: 34927066 PMCID: PMC8677937 DOI: 10.3389/fspor.2021.685845] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Physical activity, mobility or patterned mobility (i.e., exercise) is intrinsic to the functioning of Homo sapiens, and required for maintenance of health. Thus, systems such as the musculoskeletal and cardiovascular systems appear to require constant reinforcement or conditioning to maintain integrity. Loss of conditioning or development of chronic deconditioning can have multiple consequences. The study of different types of deconditioning and their prevention or reversal can offer a number of clues to the regulation of these systems and point to how deconditioning poses risk for disease development and progression. From the study of deconditioning associated with spaceflight, a condition not predicted by evolution, prolonged bedrest, protracted sedentary behavior, as well as menopause and obesity and their consequences, provide a background to better understand human heterogeneity and how physical fitness may impact the risks for chronic conditions subsequent to the deconditioning. The effectiveness of optimized physical activity and exercise protocols likely depend on the nature of the deconditioning, the sex and genetics of the individual, whether one is addressing prevention of deconditioning-associated disease or disease-associated progression, and whether it is focused on acute or chronic deconditioning associated with different forms of deconditioning. While considerable research effort has gone into preventing deconditioning, the study of the process of deconditioning and its endpoints can provide clues to the regulation of the affected systems and their contributions to human heterogeneity that have been framed by the boundary conditions of Earth during evolution and the "use it or lose it" principle of regulation. Such information regarding heterogeneity that is elaborated by the study of deconditioning environments could enhance the effectiveness of individualized interventions to prevent deconditions or rescue those who have become deconditioned.
Collapse
Affiliation(s)
- David A Hart
- Bone and Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada.,Department of Surgery, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Family Practice, Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Molecular Responses to High Hydrostatic Pressure in Eukaryotes: Genetic Insights from Studies on Saccharomyces cerevisiae. BIOLOGY 2021; 10:biology10121305. [PMID: 34943220 PMCID: PMC8698847 DOI: 10.3390/biology10121305] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 01/19/2023]
Abstract
Simple Summary High hydrostatic pressure generally has an adverse effect on the biological systems of organisms inhabiting lands or shallow sea regions. Deep-sea piezophiles that prefer high hydrostatic pressure for growth have garnered considerable scientific attention. However, the underlying molecular mechanisms of their adaptation to high pressure remains unclear owing to the challenges of culturing and manipulating the genome of piezophiles. Humans also experience high hydrostatic pressure during exercise. A long-term stay in space can cause muscle weakness in astronauts. Thus, the human body indubitably senses mechanical stresses such as hydrostatic pressure and gravity. Nonetheless, the mechanisms underlying biological responses to high pressures are not clearly understood. This review summarizes the occurrence and significance of high-pressure effects in eukaryotic cells and how the cell responds to increasing pressure by particularly focusing on the physiology of S. cerevisiae at the molecular level. Abstract High hydrostatic pressure is common mechanical stress in nature and is also experienced by the human body. Organisms in the Challenger Deep of the Mariana Trench are habitually exposed to pressures up to 110 MPa. Human joints are intermittently exposed to hydrostatic pressures of 3–10 MPa. Pressures less than 50 MPa do not deform or kill the cells. However, high pressure can have various effects on the cell’s biological processes. Although Saccharomyces cerevisiae is not a deep-sea piezophile, it can be used to elucidate the molecular mechanism underlying the cell’s responses to high pressures by applying basic knowledge of the effects of pressure on industrial processes involving microorganisms. We have explored the genes associated with the growth of S. cerevisiae under high pressure by employing functional genomic strategies and transcriptomics analysis and indicated a strong association between high-pressure signaling and the cell’s response to nutrient availability. This review summarizes the occurrence and significance of high-pressure effects on complex metabolic and genetic networks in eukaryotic cells and how the cell responds to increasing pressure by particularly focusing on the physiology of S. cerevisiae at the molecular level. Mechanosensation in humans has also been discussed.
Collapse
|
8
|
Hart DA, Nakamura N, Shrive NG. Perspective: Challenges Presented for Regeneration of Heterogeneous Musculoskeletal Tissues that Normally Develop in Unique Biomechanical Environments. Front Bioeng Biotechnol 2021; 9:760273. [PMID: 34650964 PMCID: PMC8505961 DOI: 10.3389/fbioe.2021.760273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022] Open
Abstract
Perspective: Musculoskeletal (MSK) tissues such as articular cartilage, menisci, tendons, and ligaments are often injured throughout life as a consequence of accidents. Joints can also become compromised due to the presence of inflammatory diseases such as rheumatoid arthritis. Thus, there is a need to develop regenerative approaches to address such injuries to heterogeneous tissues and ones that occur in heterogeneous environments. Such injuries can compromise both the biomechanical integrity and functional capability of these tissues. Thus, there are several challenges to overcome in order to enhance success of efforts to repair and regenerate damaged MSK tissues. Challenges: 1. MSK tissues arise during development in very different biological and biomechanical environments. These early tissues serve as a template to address the biomechanical requirements evolving during growth and maturation towards skeletal maturity. Many of these tissues are heterogeneous and have transition points in their matrix. The heterogeneity of environments thus presents a challenge to replicate with regard to both the cells and the ECM. 2. Growth and maturation of musculoskeletal tissues occurs in the presence of anabolic mediators such as growth hormone and the IGF-1 family of proteins which decline with age and are low when there is a greater need for the repair and regeneration of injured or damaged tissues with advancing age. Thus, there is the challenge of re-creating an anabolic environment to enhance incorporation of implanted constructs. 3. The environments associated with injury or chronic degeneration of tissues are often catabolic or inflammatory. Thus, there is the challenge of creating a more favorable in vivo environment to facilitate the successful implantation of in vitro engineered constructs to regenerate damaged tissues. Conclusions: The goal of regenerating MSK tissues has to be to meet not only the biological requirements (components and structure) but also the heterogeneity of function (biomechanics) in vivo. Furthermore, for many of these tissues, the regenerative approach has to overcome the site of injury being influenced by catabolism/inflammation. Attempts to date using both endogenous cells, exogenous cells and scaffolds of various types have been limited in achieving long term outcomes, but progress is being made.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Bone and Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada.,McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada
| | - Norimasa Nakamura
- Institute for Medical Science in Sport, Osaka Health Science University, Osaka, Japan
| | - Nigel G Shrive
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada.,Biomedical Engineering Graduate Program, Department of Civil Engineering, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Klarmann GJ, Gaston J, Ho VB. A review of strategies for development of tissue engineered meniscal implants. BIOMATERIALS AND BIOSYSTEMS 2021; 4:100026. [PMID: 36824574 PMCID: PMC9934480 DOI: 10.1016/j.bbiosy.2021.100026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 12/09/2022] Open
Abstract
The meniscus is a key stabilizing tissue of the knee that facilitates proper tracking and movement of the knee joint and absorbs stresses related to physical activity. This review article describes the biology, structure, and functions of the human knee meniscus, common tears and repair approaches, and current research and development approaches using modern methods to fabricate a scaffold or tissue engineered meniscal replacement. Meniscal tears are quite common, often resulting from sports or physical training, though injury can result without specific contact during normal physical activity such as bending or squatting. Meniscal injuries often require surgical intervention to repair, restore basic functionality and relieve pain, and severe damage may warrant reconstruction using allograft transplants or commercial implant devices. Ongoing research is attempting to develop alternative scaffold and tissue engineered devices using modern fabrication techniques including three-dimensional (3D) printing which can fabricate a patient-specific meniscus replacement. An ideal meniscal substitute should have mechanical properties that are close to that of natural human meniscus, and also be easily adapted for surgical procedures and fixation. A better understanding of the organization and structure of the meniscus as well as its potential points of failure will lead to improved design approaches to generate a suitable and functional replacement.
Collapse
Affiliation(s)
- George J. Klarmann
- 4D Bio³ Center, Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA,The Geneva Foundation, 917 Pacific Ave., Tacoma, WA 98402, USA,Corresponding author at: USU-4D Bio³ Center, 9410 Key West Ave., Rockville, MD 20850, USA.
| | - Joel Gaston
- 4D Bio³ Center, Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA,The Geneva Foundation, 917 Pacific Ave., Tacoma, WA 98402, USA
| | - Vincent B. Ho
- 4D Bio³ Center, Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| |
Collapse
|
10
|
Otoo B, Li L, Hart DA, Herzog W. Development of a Porcine Model to Assess the Effect of In-Situ Knee Joint Loading On Site-Specific Cartilage Gene Expression. J Biomech Eng 2021; 144:1115048. [PMID: 34318319 DOI: 10.1115/1.4051922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 11/08/2022]
Abstract
Cyclic mechanical loading of cartilage induces stresses and fluid flow which are thought to modulate chondrocyte metabolism. The uneven surface, plus the heterogeneity of cartilage within a joint, makes stress and fluid pressure distribution in the tissue non-uniform, and gene expression may vary at different sites as a function of load magnitude, frequency and time. In previous studies, cartilage explants were used for loading tests to investigate biological responses of the cartilage to mechanical loading. In contrast, we used loading tests on intact knee joints, to better reflect the loading conditions in a joint, and thus provide a more physiologically relevant mechanical environment. Gene expression levels in loaded samples for a selection of relevant genes were compared with those of the corresponding unloaded control samples to characterize potential differences. Furthermore, the effect of load magnitude and duration on gene expression levels were investigated. We observed differences in gene expression levels between samples from different sites in the same joint and between corresponding samples from the same site in loaded and unloaded joints. Consistent with previous findings, our results indicate that there is a critical upper and lower threshold of loading for triggering the expression of certain genes. Variations in gene expression levels may reflect the effect of local loading, topography and structure of the cartilage in an intact joint on the metabolic activity of the associated cells.
Collapse
Affiliation(s)
- Baaba Otoo
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - LePing Li
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - David A Hart
- McCaig Institute for Bone and Joint Health, Department of Surgery, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
11
|
Engineered human meniscus' matrix-forming phenotype is unaffected by low strain dynamic compression under hypoxic conditions. PLoS One 2021; 16:e0248292. [PMID: 33690647 PMCID: PMC7946300 DOI: 10.1371/journal.pone.0248292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Low oxygen and mechanical loading may play roles in regulating the fibrocartilaginous phenotype of the human inner meniscus, but their combination in engineered tissues remains unstudied. Here, we investigated how continuous low oxygen (“hypoxia”) combined with dynamic compression would affect the fibrocartilaginous “inner meniscus-like” matrix-forming phenotype of human meniscus fibrochondrocytes (MFCs) in a porous type I collagen scaffold. Freshly-seeded MFC scaffolds were cultured for 4 weeks in either 3 or 20% O2 or pre-cultured for 2 weeks in 3% O2 and then dynamically compressed for 2 weeks (10% strain, 1 Hz, 1 h/day, 5 days/week), all with or without TGF-β3 supplementation. TGF-β3 supplementation was found necessary to induce matrix formation by MFCs in the collagen scaffold regardless of oxygen tension and application of the dynamic compression loading regime. Neither hypoxia under static culture nor hypoxia combined with dynamic compression had significant effects on expression of specific protein and mRNA markers for the fibrocartilaginous matrix-forming phenotype. Mechanical properties significantly increased over the two-week loading period but were not different between static and dynamic-loaded tissues after the loading period. These findings indicate that 3% O2 applied immediately after scaffold seeding and dynamic compression to 10% strain do not affect the fibrocartilaginous matrix-forming phenotype of human MFCs in this type I collagen scaffold. It is possible that a delayed hypoxia treatment and an optimized pre-culture period and loading regime combination would have led to different outcomes.
Collapse
|
12
|
Hart DA, Zernicke RF. Optimal Human Functioning Requires Exercise Across the Lifespan: Mobility in a 1g Environment Is Intrinsic to the Integrity of Multiple Biological Systems. Front Physiol 2020; 11:156. [PMID: 32174843 PMCID: PMC7056746 DOI: 10.3389/fphys.2020.00156] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
It is widely acknowledged that achieving and maintaining a healthier lifestyle can be enhanced through regular participation in sport and physical activity. Coevally, a growing number of health professionals regard exercise as a legitimate intervention strategy for those who have lost their health. Exercise has been shown to be effective for overweight or obese individuals, who are at risk to lose their health due to development of type II diabetes, cardiovascular disease, as well as, infiltration of muscles, bone and other organs with fat, so it can be considered medicine. However, exercise and associated mobility likely also have a strong prevention component that can effectively contribute to the maintenance of the integrity of multiple biological systems for those who do not have overt risk factors or ongoing disease. While prevention is preferred over intervention in the context of disease, it is clear that exercise and associated mobility, generally, can be an effective influence, although overtraining and excessive loading can be deleterious to health. The basis for the generally positive influence of exercise likely lies in the fact that many of our physiological systems are designed to function in the mechanically dynamic and active 1g environment of Earth (e.g., muscles, cartilage, ligaments, tendons, bones, and cardiovascular system, and neuro-cognitive function), and nearly all these systems subscribe to the "use it or lose it" paradigm. This conclusion is supported by the changes observed over the more than 50 years of space flight and exposure to microgravity conditions. Therefore, the premise advanced is: "exercise is preventative for loss of health due to age-related decline in the integrity of several physiological systems via constant reinforcement of those systems, and thus, optimal levels of exercise and physical activity are endemic to, essential for, and intrinsic to optimal health and wellbeing."
Collapse
Affiliation(s)
- David A. Hart
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Surgery, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Bone and Joint Health Strategic Clinical Network, Edmonton, AB, Canada
| | - Ronald F. Zernicke
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Surgery, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Heard BJ, Barton KI, Agbojo OM, Chung M, Sevick JL, Bader TJ, Martin CR, Shrive NG, Hart DA. Molecular Response of Rabbit Menisci to Surgically Induced Hemarthrosis and a Single Intra-Articular Dexamethasone Treatment. J Orthop Res 2019; 37:2043-2052. [PMID: 31095777 DOI: 10.1002/jor.24346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/02/2019] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament reconstructive surgery can restore biomechanical stability, however, such surgery cannot reliably prevent the onset of post-traumatic osteoarthritis. The aim of this study was to elucidate the molecular response that occurs within the menisci following a surgical injury that allows bleeding into the joint space, and then to investigate the effect of dexamethasone (DEX) on this molecular response. Cell viability studies following acute controlled exposure to blood and blood plus DEX were also conducted. Forty-eight New Zealand white rabbits were randomly allocated into control, sham, surgical, and surgical + DEX groups (each group n = 6). Animals were sacrificed at 48 h and 9 weeks, and menisci were harvested. The messenger RNA (mRNA) expression levels for key inflammatory, and degradative proteins, as well as mRNA levels for autophagy pathway molecules were quantified, and statistically significant changes were described. Meniscal cell viability was calculated by incubating groups of medial and lateral menisci in autologous blood, or autologous blood plus DEX for 48 h (each group n = 4; total of eight medial and eight lateral menisci), and then conducting a histological live/dead assay. Results indicated a significant reduction in only medial meniscal cell viability when the tissue was exposed to blood in combination with DEX. A single administration of DEX following surgery significantly suppresses the elevated molecular expression for key inflammatory and degradative markers within menisci at 48 h and 9 weeks post-surgery. In vitro, autologous blood did not affect cell viability, but addition of DEX uniquely impacted the medial menisci. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2043-2052, 2019.
Collapse
Affiliation(s)
- Bryan J Heard
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Kristen I Barton
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Omokhowa M Agbojo
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - May Chung
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - John L Sevick
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Taylor J Bader
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - C Ryan Martin
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Nigel G Shrive
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - David A Hart
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Department of Surgery, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Alberta Health Services Bone and Joint Health Strategic Clinical Networks, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Rios JL, Bomhof MR, Reimer RA, Hart DA, Collins KH, Herzog W. Protective effect of prebiotic and exercise intervention on knee health in a rat model of diet-induced obesity. Sci Rep 2019; 9:3893. [PMID: 30846801 PMCID: PMC6405910 DOI: 10.1038/s41598-019-40601-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/20/2019] [Indexed: 12/18/2022] Open
Abstract
Obesity, and associated metabolic syndrome, have been identified as primary risk factors for the development of knee osteoarthritis (OA), representing nearly 60% of the OA patient population. In this study, we sought to determine the effects of prebiotic fibre supplementation, aerobic exercise, and the combination of the two interventions, on the development of metabolic knee osteoarthritis in a high-fat/high-sucrose (HFS) diet-induced rat model of obesity. Twelve-week-old male Sprague-Dawley rats were randomized into five groups: a non-exercising control group fed a standard chow diet, a non-exercising group fed a HFS diet, a non-exercising group fed a HFS diet combined with prebiotic fibre supplement, an exercise group fed a HFS diet, and an exercise group fed a HFS diet combined with prebiotic fibre supplement. Outcome measures included knee joint damage, percent body fat, insulin sensitivity, serum lipid profile, serum endotoxin, serum and synovial fluid cytokines and adipokines, and cecal microbiota. Prebiotic fibre supplementation, aerobic exercise, and the combination of the two interventions completely prevented knee joint damage that is otherwise observed in this rat model of obesity. Prevention of knee damage was associated with a normalization of insulin resistance, leptin levels, dyslipidemia, gut microbiota, and endotoxemia in the HFS-fed rats.
Collapse
Affiliation(s)
- Jaqueline Lourdes Rios
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada. .,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| | - Marc R Bomhof
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Department of Kinesiology & Physical Education, University of Lethbridge, Lethbridge, AB, Canada
| | - Raylene A Reimer
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - David A Hart
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Kelsey H Collins
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Matsui S, Majima T, Mominoki K, Hirayama H, Oshima Y, Takahashi K, Takai S. Effects of Endoprosthesis Head Material on Acetabular Cartilage Metabolism: An Animal Study Using Crossbred Pigs. J NIPPON MED SCH 2018; 85:309-314. [PMID: 30568056 DOI: 10.1272/jnms.jnms.2018_85-50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hip endoprosthesis is one option for the treatment of displaced femoral neck fractures and avascular necrosis of the femoral head. Few reports are available describing acetabular cartilage metabolism after endoprosthesis surgery of the hip. The purpose of this study was to compare the biological effects on cartilage between cobalt-chrome (Co-Cr) and alumina ceramic heads wherein the cartilage articulates directly. METHODS We used the acetabular cartilage from six hips of three immature crossbred pigs to examine the effects on cytokines, the amount of hyaluronic acid (HA), and cartilage mRNA expression of ceramic head and Co-Cr head endoprosthesis. Mechanical loading of materials of Co-Cr and ceramic heads was performed on the acetabular cartilage in culture media as an organ culture model. Thereafter, protein levels of cytokines (MMP-1, 3, TNF-alpha (α), Interleukin (IL)-1 alpha (α), and IL-1 beta (β)) and the amount of HA were measured from the culture media. Cartilage RNA extraction was performed, and quantitative reverse transcriptase-polymerase chain reaction was performed with primer sets for type I, II, and III collagens; aggrecan; MMP-1, 3, 13; TNF-α; and IL-1 α, IL-1 β. RESULTS Protein level of IL-1 β and amount of HA in the Co-Cr group were significantly higher than those of the Ceramic group. Type II collagen mRNA expression in the Ceramic group was significantly higher than in the Co-Cr group. IL-1 β mRNA expression was significantly higher in the Co-Cr group than in the Ceramic group. CONCLUSIONS The present study showed that ceramic bipolar produces smaller adverse effects on cartilage cells compared to Co-Cr bipolar. These results could have significant implications for implant usage not only in hip joints, but also in other joints, including the shoulder, talus and radial head.
Collapse
Affiliation(s)
- Shuhei Matsui
- Department of Orthopedic Surgery, Nippon Medical School
| | | | | | | | | | | | - Shinro Takai
- Department of Orthopedic Surgery, Nippon Medical School
| |
Collapse
|
16
|
Chen M, Guo W, Gao S, Hao C, Shen S, Zhang Z, Wang Z, Li X, Jing X, Zhang X, Yuan Z, Wang M, Zhang Y, Peng J, Wang A, Wang Y, Sui X, Liu S, Guo Q. Biomechanical Stimulus Based Strategies for Meniscus Tissue Engineering and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:392-402. [PMID: 29897012 DOI: 10.1089/ten.teb.2017.0508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Meniscus injuries are very common in the knee joint. Treating a damaged meniscus continues to be a scientific challenge in sport medicine because of its poor self-healing potential and few clinical therapeutic options. Tissue engineering strategies are very promising solutions for repairing and regenerating a damaged meniscus. Meniscus is exposed to a complex biomechanical microenvironment, and it plays a crucial role in meniscal development, growth, and repairing. Over the past decades, increasing attention has been focused on the use of biomechanical stimulus to enhance biomechanical properties of the engineered meniscus. Further understanding the influence of mechanical stimulation on cell proliferation and differentiation, metabolism, relevant gene expression, and pro/anti-inflammatory responses may be beneficial to enhance meniscal repair and regeneration. On the one hand, this review describes some basic information about meniscus; on the other hand, we sum up the various biomechanical stimulus based strategies applied in meniscus tissue engineering and how these factors affect meniscal regeneration. We hope this review will provide researchers with inspiration on tissue engineering strategies for meniscus regeneration in the future.
Collapse
Affiliation(s)
- Mingxue Chen
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China .,2 Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, 100035 Beijing, People's Republic of China
| | - Weimin Guo
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Shunag Gao
- 3 Center for Biomaterial and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing, People's Republic of China
| | - Chunxiang Hao
- 4 Institute of Anesthesiology , Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Shi Shen
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China .,5 Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University , Luzhou, People's Republic of China
| | - Zengzeng Zhang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China .,6 First Department of Orthopedics, First Affiliated Hospital of Jiamusi University , Jiamusi, People's Republic of China
| | - Zehao Wang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Xu Li
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China .,7 School of Medicine, Nankai University , Tianjin, People's Republic of China
| | - Xiaoguang Jing
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China .,6 First Department of Orthopedics, First Affiliated Hospital of Jiamusi University , Jiamusi, People's Republic of China
| | - Xueliang Zhang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China .,8 Shanxi Traditional Chinese Hospital , Taiyuan, People's Republic of China
| | - Zhiguo Yuan
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Mingjie Wang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Yu Zhang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Jiang Peng
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Aiyuan Wang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Yu Wang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Xiang Sui
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Shuyun Liu
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Quanyi Guo
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| |
Collapse
|
17
|
Peloquin JM, Santare MH, Elliott DM. Short cracks in knee meniscus tissue cause strain concentrations, but do not reduce ultimate stress, in single-cycle uniaxial tension. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181166. [PMID: 30564409 PMCID: PMC6281910 DOI: 10.1098/rsos.181166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/19/2018] [Indexed: 05/15/2023]
Abstract
Tears are central to knee meniscus pathology and, from a mechanical perspective, are crack-like defects (cracks). In many materials, cracks create stress concentrations that cause progressive local rupture and reduce effective strength. It is currently unknown if cracks in meniscus have these consequences; if they do, this would have repercussions for management of meniscus pathology. The objective of this study was to determine if a short crack in meniscus tissue, which mimics a preclinical meniscus tear, (a) causes crack growth and reduces effective strength, (b) creates a near-tip strain concentration and (c) creates unloaded regions on either side of the crack. Specimens with and without cracks were tested in uniaxial tension and compared in terms of macroscopic stress-strain curves and digital image correlation strain fields. The strain fields were used as an indicator of stress concentrations and unloaded regions. Effective strength was found to be insensitive to the presence of a crack (potential effect < 0.86 s.d.; β = 0.2), but significant strain concentrations, which have the potential to lead to long-term accumulation of tissue or cell damage, were observed near the crack tip.
Collapse
Affiliation(s)
- John M. Peloquin
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Michael H. Santare
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Dawn M. Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
18
|
Quantifying the Effects of Different Treadmill Training Speeds and Durations on the Health of Rat Knee Joints. SPORTS MEDICINE-OPEN 2018; 4:15. [PMID: 29610999 PMCID: PMC5880791 DOI: 10.1186/s40798-018-0127-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/11/2018] [Indexed: 12/22/2022]
Abstract
Background Walking and running provide cyclical loading to the knee which is thought essential for joint health within a physiological window. However, exercising outside the physiological window, e.g. excessive cyclical loading, may produce loading conditions that could be detrimental to joint health and lead to injury and, ultimately, osteoarthritis. The purpose of this study was to assess the effects of a stepwise increase in speed and duration of treadmill training on knee joint integrity and to identify the potential threshold for joint damage. Methods Twenty-four Sprague-Dawley rats were randomized into four groups: no exercise, moderate duration, high duration, and extra high duration treadmill exercise. The treadmill training consisted of a 12-week progressive program. Following the intervention period, histologic serial sections of the left knee were graded using a modified Mankin Histology Scoring System. Mechanical testing of the tibial plateau cartilage and RT-qPCR analysis of mRNA from the fat pad, patellar tendon, and synovium were performed for the right knee. Kruskal-Wallis testing was used to assess differences between groups for all variables. Results There were no differences in cartilage integrity or mechanical properties between groups and no differences in mRNA from the fat pad and patellar tendon. However, COX-2 mRNA levels in the synovium were lower for all animals in the exercise intervention groups compared to those in the no exercise group. Conclusions Therefore, these exercise protocols did not exceed the joint physiological window and can likely be used safely in aerobic exercise intervention studies without affecting knee joint health.
Collapse
|
19
|
Shimomura K, Hamamoto S, Hart DA, Yoshikawa H, Nakamura N. Meniscal repair and regeneration: Current strategies and future perspectives. J Clin Orthop Trauma 2018; 9:247-253. [PMID: 30202157 PMCID: PMC6128795 DOI: 10.1016/j.jcot.2018.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/30/2018] [Accepted: 07/14/2018] [Indexed: 01/01/2023] Open
Abstract
The management of meniscal injuries remains difficult and challenging. Although several clinical options exist for the treatment of such injuries, complete regeneration of the damaged meniscus has proved difficult due to the limited healing capacity of the tissue. With the advancements in tissue engineering and cell-based technologies, new therapeutic options for patients with currently incurable meniscal lesions now potentially exist. This review will discuss basic anatomy, current repair techniques and treatment options for loss of meniscal integrity. Specifically, we focus on the possibility and feasibility of the latest tissue engineering approaches, including 3D printing technologies. Therefore, this discussion will facilitate a better understanding of the latest trends in meniscal repair and regeneration, and contribute to the future application of such clinical therapies for patients with meniscal injuries.
Collapse
Affiliation(s)
- Kazunori Shimomura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Shuichi Hamamoto
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - David A. Hart
- McCaig Institute for Bone & Joint Health, University of Calgary, 3330 Hospital Drive Northwest, Calgary, Alberta, T2N 4N1, Canada
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Norimasa Nakamura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan,Institute for Medical Science in Sports, Osaka Health Science University, 1-9-27 Tenma, Kita-ku, Osaka City, Osaka, 530-0043, Japan,Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan,Corresponding author. Institute for Medical Science in Sports, Osaka Health Science University, 1-9-27, Tenma, Kita-ku, Osaka City, Osaka, 530-0043, Japan.
| |
Collapse
|
20
|
Abstract
The meniscus plays a critical biomechanical role in the knee, providing load support, joint stability, and congruity. Importantly, growing evidence indicates that the mechanobiologic response of meniscal cells plays a critical role in the physiologic, pathologic, and repair responses of the meniscus. Here we review experimental and theoretical studies that have begun to directly measure the biomechanical effects of joint loading on the meniscus under physiologic and pathologic conditions, showing that the menisci are exposed to high contact stresses, resulting in a complex and nonuniform stress-strain environment within the tissue. By combining microscale measurements of the mechanical properties of meniscal cells and their pericellular and extracellular matrix regions, theoretical and experimental models indicate that the cells in the meniscus are exposed to a complex and inhomogeneous environment of stress, strain, fluid pressure, fluid flow, and a variety of physicochemical factors. Studies across a range of culture systems from isolated cells to tissues have revealed that the biological response of meniscal cells is directly influenced by physical factors, such as tension, compression, and hydrostatic pressure. In addition, these studies have provided new insights into the mechanotransduction mechanisms by which physical signals are converted into metabolic or pro/anti-inflammatory responses. Taken together, these in vivo and in vitro studies show that mechanical factors play an important role in the health, degeneration, and regeneration of the meniscus. A more thorough understanding of the mechanobiologic responses of the meniscus will hopefully lead to therapeutic approaches to prevent degeneration and enhance repair of the meniscus.
Collapse
|
21
|
Mauck RL, Burdick JA. From repair to regeneration: biomaterials to reprogram the meniscus wound microenvironment. Ann Biomed Eng 2015; 43:529-42. [PMID: 25650096 DOI: 10.1007/s10439-015-1249-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/09/2015] [Indexed: 12/20/2022]
Abstract
When the field of tissue engineering first arose, scaffolds were conceived of as inert three-dimensional structures whose primary function was to support cellularity and tissue growth. Since then, advances in scaffold and biomaterial design have evolved to not only guide tissue formation, but also to interact dynamically with and manipulate the wound environment. At present, these efforts are being directed towards strategies that directly address limitations in endogenous wound repair, with the goal of reprogramming the local wound environment (and the cells within that locality) from a state that culminates in an inferior tissue repair into a state in which functional regeneration is achieved. This review will address this approach with a focus on recent advances in scaffold design towards the resolution of tears of the knee meniscus as a case example. The inherent limitations to endogenous repair will be discussed, as will specific examples of how biomaterials are being designed to overcome these limitations. Examples will include design of fibrous scaffolds that promote colonization by modulating local extracellular matrix density and delivering recruitment factors. Furthermore, we will discuss scaffolds that are themselves modulated by the wound environment to alter porosity and modulate therapeutic release through precise coordination of scaffold degradation. Finally, we will close with emerging concepts in local control of cell mechanics to improve interstitial cell migration and so advance repair. Overall, these examples will illustrate how emergent features within a biomaterial can be tuned to manipulate and harness the local tissue microenvironment in order to promote robust regeneration.
Collapse
Affiliation(s)
- Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, 19104, USA,
| | | |
Collapse
|
22
|
Thaler JD, Achari Y, Lu T, Shrive NG, Hart DA. Estrogen receptor beta and truncated variants enhance the expression of transfected MMP-1 promoter constructs in response to specific mechanical loading. Biol Sex Differ 2014; 5:14. [PMID: 25625008 PMCID: PMC4306124 DOI: 10.1186/s13293-014-0014-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/13/2014] [Indexed: 12/22/2022] Open
Abstract
Background Joint diseases such as osteoarthritis (OA) predominantly afflict post-menopausal women, suggesting a pertinent role for female hormones. Estrogen receptor beta (ER-β) has been detected in connective tissues of the knee joint suggesting that these tissues are responsive to the hormone estrogen. Matrix metalloproteinase-1 (MMP-1) activity contributes to cartilage degradation, a key factor leading to OA development in synovial joints. Two polymorphic forms of MMP-1 exist due to a deletion/insertion of the guanine residue in the promoter, and the 2G allelic variant of MMP-1 exhibits more activity than the 1G allele. Previous studies have demonstrated that the polymorphic forms of the human MMP-1 are influenced by the modulating effects of estrogen receptor isoforms. In addition to hormonal influences, physiological factors such as altered mechanical loading are also contributory features of OA. In the present study, the combined influence of biomechanical and hormonal variables on the activity of MMP-1 isoforms was evaluated. We hypothesized that the combined effects of ER-β and sheer stress will differentially activate the two allelic forms of MMP-1 in a hormone-independent manner. Methods HIG-82 synoviocytes were transiently transfected with 1G or 2G alleles (±) ER-β and subjected to either shear or equibiaxial stress. Next, 1G/2G promoter activity was measured to determine the combined influence of physiological stimuli. Truncated ER-β constructs were used to determine the importance of different domains of ER-β on 1G/2G activation. Results The 2G allele exhibited a constitutively higher activity than the 1G allele, which was further increased when the transfected cells were subject to shear stress, but not equibiaxial stress. Moreover, the combination of ER-β and shear stress further increased the activity levels of the 1G/2G allelic variants. Additionally, select AF-2 truncated ER-β variants led to increased activity levels for the 2G allele, indicating the AF-1 domain was likely involved in the response to mechanical stimulation. Conclusions These results suggest that the 1G/2G alleles of MMP-1 are influenced by specific mechanical stimuli like shear stress, as well as the ER-β receptor. These findings contribute to the potential allelic involvement in connective tissue diseases such as OA in females compared to males.
Collapse
Affiliation(s)
- John D Thaler
- McCaig Institute for Bone and Joint Health, University of Calgary, 3330 Hospital Drive NW, Calgary T2N 4 N1, AB, Canada
| | - Yamini Achari
- McCaig Institute for Bone and Joint Health, University of Calgary, 3330 Hospital Drive NW, Calgary T2N 4 N1, AB, Canada
| | - Ting Lu
- McCaig Institute for Bone and Joint Health, University of Calgary, 3330 Hospital Drive NW, Calgary T2N 4 N1, AB, Canada
| | - Nigel G Shrive
- McCaig Institute for Bone and Joint Health, University of Calgary, 3330 Hospital Drive NW, Calgary T2N 4 N1, AB, Canada ; Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary T2N 1 N4, AB, Canada
| | - David A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, 3330 Hospital Drive NW, Calgary T2N 4 N1, AB, Canada
| |
Collapse
|
23
|
Hart DA. Perspectives on endogenous and exogenous tissue engineering following injury to tissues of the knee. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jbise.2014.72009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Tan Y, Lu K, Deng Y, Cao H, Chen B, Wang H, Magdalou J, Chen L. The effects of levofloxacin on rabbit fibroblast-like synoviocytes in vitro. Toxicol Appl Pharmacol 2012; 265:175-80. [DOI: 10.1016/j.taap.2012.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/16/2022]
|
25
|
Bring DKI, Paulson K, Renstrom P, Salo P, Hart DA, Ackermann PW. Residual substance P levels after capsaicin treatment correlate with tendon repair. Wound Repair Regen 2012; 20:50-60. [PMID: 22276586 DOI: 10.1111/j.1524-475x.2011.00755.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of the study was to assess healing after capsaicin-induced substance P (SP) depletion during rat Achilles tendon repair by biomechanical testing. Capsaicin treatment reduced the concentrations of SP by ∼60% and calcitonin gene-related peptide by ∼40% as compared with the control group, as assessed by radioimmunoassay in the dorsal root ganglia, at 1 and 4 weeks post-tendon rupture. Also, the peripheral neuronal presence of SP and calcitonin gene-related peptide, as assessed by immunohistochemistry, was lower at both weeks 1 and 4. The decreased peripheral neuronal presence of SP at week 1 correlated with the corresponding levels in the dorsal root ganglia (r = 0.54, p = 0.018). The reduced presence of SP/calcitonin gene-related peptide after capsaicin treatment was verified by a decreased sensitivity to painful mechanical and thermal stimuli (p < 0.05). Correlation analyses between individual residual SP levels and biomechanical tissue properties were performed because of differences in failure mode between the groups and high individual variations in the SP levels after capsaicin treatment. Thus, the residual SP levels in the dorsal root ganglia correlated with transverse area, ultimate tensile strength, and stress at failure (r = 0.39, p = 0.036; r = 0.53, p = 0.005; and r = 0.43, p = 0.023, respectively). Furthermore, individual pain sensitivity at week 2 correlated with peripheral occurrence of SP and was correlated with tensile strength and stress at failure (r = 0.89, p = 0.006 and r = 0.78, p = 0.015) at week 4. In conclusion, rats with higher residual SP levels after capsaicin-induced neuropathy develop improved tensile strength and stress at failure in the healing of Achilles tendon.
Collapse
Affiliation(s)
- Daniel K I Bring
- Section of Orthopaedics and Sports Medicine, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
26
|
The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 2011; 32:7411-31. [PMID: 21764438 DOI: 10.1016/j.biomaterials.2011.06.037] [Citation(s) in RCA: 653] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/17/2011] [Indexed: 02/07/2023]
Abstract
Extensive scientific investigations in recent decades have established the anatomical, biomechanical, and functional importance that the meniscus holds within the knee joint. As a vital part of the joint, it acts to prevent the deterioration and degeneration of articular cartilage, and the onset and development of osteoarthritis. For this reason, research into meniscus repair has been the recipient of particular interest from the orthopedic and bioengineering communities. Current repair techniques are only effective in treating lesions located in the peripheral vascularized region of the meniscus. Healing lesions found in the inner avascular region, which functions under a highly demanding mechanical environment, is considered to be a significant challenge. An adequate treatment approach has yet to be established, though many attempts have been undertaken. The current primary method for treatment is partial meniscectomy, which commonly results in the progressive development of osteoarthritis. This drawback has shifted research interest toward the fields of biomaterials and bioengineering, where it is hoped that meniscal deterioration can be tackled with the help of tissue engineering. So far, different approaches and strategies have contributed to the in vitro generation of meniscus constructs, which are capable of restoring meniscal lesions to some extent, both functionally as well as anatomically. The selection of the appropriate cell source (autologous, allogeneic, or xenogeneic cells, or stem cells) is undoubtedly regarded as key to successful meniscal tissue engineering. Furthermore, a large variation of scaffolds for tissue engineering have been proposed and produced in experimental and clinical studies, although a few problems with these (e.g., byproducts of degradation, stress shielding) have shifted research interest toward new strategies (e.g., scaffoldless approaches, self-assembly). A large number of different chemical (e.g., TGF-β1, C-ABC) and mechanical stimuli (e.g., direct compression, hydrostatic pressure) have also been investigated, both in terms of encouraging functional tissue formation, as well as in differentiating stem cells. Even though the problems accompanying meniscus tissue engineering research are considerable, we are undoubtedly in the dawn of a new era, whereby recent advances in biology, engineering, and medicine are leading to the successful treatment of meniscal lesions.
Collapse
|
27
|
Tan GK, Cooper-White JJ. Interactions of meniscal cells with extracellular matrix molecules: towards the generation of tissue engineered menisci. Cell Adh Migr 2011; 5:220-6. [PMID: 21187716 DOI: 10.4161/cam.5.3.14463] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Menisci are one of the most commonly injured parts of the knee. Conventional surgical interventions are often associated with a long-term increased risk of osteoarthritis. Meniscal tissue engineering utilizes natural or synthetic matrices as a scaffold to guide tissue repair or regeneration in three dimensions. Studies have shown that a diverse cellular response can be triggered depending on the composition of the surrounding extracellular matrix (ECM) components. As such, attempts have been made to replace or repair meniscus defects using tissue grafts or reconstituted ECM components prepared from a multitude of tissues. This commentary summarizes the most recent data on the response of meniscal cells to ECM components, both in vivo and in vitro, and focuses on their potential roles in meniscal repair and regeneration. We also discuss our recent investigations into the interactions of meniscal cells and a self assembled biomimetic surface composed of meniscal ECM molecules. The biological effects conferred by the biomimetic surface, in terms of cell adhesion, proliferation, gene expression profiles and matrix synthesis, were evaluated. Finally, some suggested directions for future research in this field are outlined.
Collapse
Affiliation(s)
- Guak-Kim Tan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Queensland, Australia
| | | |
Collapse
|
28
|
McNulty AL, Estes BT, Wilusz RE, Weinberg JB, Guilak F. Dynamic loading enhances integrative meniscal repair in the presence of interleukin-1. Osteoarthritis Cartilage 2010; 18:830-8. [PMID: 20202487 PMCID: PMC2872683 DOI: 10.1016/j.joca.2010.02.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/22/2010] [Accepted: 02/06/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Meniscal tears are a common knee injury and increased levels of interleukin-1 (IL-1) have been measured in injured and degenerated joints. Studies have shown that IL-1 decreases the shear strength, cell accumulation, and tissue formation in meniscal repair interfaces. While mechanical stress and IL-1 modulate meniscal biosynthesis and degradation, the effects of dynamic loading on meniscal repair are unknown. The purpose of this study was to determine the effects of mechanical compression on meniscal repair under normal and inflammatory conditions. EXPERIMENTAL DESIGN Explants were harvested from porcine medial menisci. To simulate a full-thickness defect, a central core was removed and reinserted. Explants were loaded for 4h/day at 1 Hz and 0%-26% strain for 14 days in the presence of 0 or 100 pg/mL of IL-1. Media were assessed for matrix metalloproteinase (MMP) activity, aggrecanase activity, sulfated glycosaminoglycan (S-GAG) release, and nitric oxide (NO) production. After 14 days, biomechanical testing and histological analyses were performed. RESULTS IL-1 increased MMP activity, S-GAG release, and NO production, while decreasing the shear strength and tissue repair in the interface. Dynamic loading antagonized IL-1-mediated inhibition of repair at all strain amplitudes. Neither IL-1 treatment nor strain altered aggrecanase activity. Additionally, strain alone did not alter meniscal healing, except at the highest strain magnitude (26%), a level that enhanced the strength of repair. CONCLUSIONS Dynamic loading blocked the catabolic effects of IL-1 on meniscal repair, suggesting that joint loading through physical therapy may be beneficial in promoting healing of meniscal lesions under inflammatory conditions.
Collapse
Affiliation(s)
- Amy L. McNulty
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Bradley T. Estes
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Rebecca E. Wilusz
- Department of Surgery, Duke University Medical Center, Durham, NC, USA,Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - J. Brice Weinberg
- Department of Medicine, Duke University Medical Center, Durham, NC, USA,VA Medical Center, Durham, NC, USA
| | - Farshid Guilak
- Department of Surgery, Duke University Medical Center, Durham, NC, USA,Department of Biomedical Engineering, Duke University, Durham, NC, USA, Corresponding author: Farshid Guilak, Ph.D., Duke University Medical Center, Box 3093, Durham, NC 27710, Phone (919) 684-2521, Fax (919) 681-8490,
| |
Collapse
|
29
|
Gunja NJ, Athanasiou KA. Effects of hydrostatic pressure on leporine meniscus cell-seeded PLLA scaffolds. J Biomed Mater Res A 2010; 92:896-905. [PMID: 19283825 DOI: 10.1002/jbm.a.32451] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hydrostatic pressure (HP) is an important component of the loading environment of the knee joint. Studies with articular chondrocytes and TMJ disc fibrochondrocytes have identified certain benefits of HP for tissue engineering purposes. However, similar studies with meniscus cells are lacking. Thus, in this experiment, the effects of applying 10 MPa of HP at three different frequencies (0, 0.1, and 1 Hz) to leporine meniscus cell-seeded PLLA scaffolds were examined. HP was applied once every 3 days for 1 h for a period of 28 days. Constructs were analyzed for cellular, biochemical, and biomechanical properties. At t = 4 weeks, total collagen/scaffold was found to be significantly higher in the 10 MPa, 0 Hz group when compared with other groups. This despite the fact that the cell numbers/scaffold were found to be lower in all HP groups when compared with the culture control. Additionally, the total GAG/scaffold, instantaneous modulus, and relaxation modulus were significantly increased in the 10 MPa, 0 Hz group when compared with the culture control. In summary, this experiment provides evidence for the benefit of a 10 MPa, 0 Hz stimulus, on both biochemical and biomechanical aspects, for the purposes of meniscus tissue engineering using PLLA scaffolds.
Collapse
Affiliation(s)
- Najmuddin J Gunja
- Department of Bioengineering, Rice University, Houston, Texas 77251, USA
| | | |
Collapse
|
30
|
Gunja NJ, Athanasiou KA. Additive and synergistic effects of bFGF and hypoxia on leporine meniscus cell-seeded PLLA scaffolds. J Tissue Eng Regen Med 2010; 4:115-22. [PMID: 19937913 PMCID: PMC3553794 DOI: 10.1002/term.221] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Injuries to avascular regions of menisci do not heal and result in significant discomfort to patients. Current treatments, such as partial meniscectomy, alleviate these symptoms in the short term but lead to premature osteoarthritis as a result of compromised stability and changes in knee biomechanics. Thus, tissue engineering of the meniscus may provide an alternative treatment modality to overcome this problem. In this experiment, a scaffold-based tissue-engineering approach was utilized to regenerate the meniscus. Meniscus cells were cultured on poly-L-lactic acid scaffolds in normoxic (approximately 21% oxygen) or hypoxic (approximately 2% oxygen) conditions in the presence or absence of the growth factor, basic fibroblast growth factor (bFGF). At t = 4 weeks, histological sections of constructs showed presence of collagen and glycosaminoglycan (GAG) in all groups. Immunohistochemical staining showed the presence of collagen I in all groups and collagen II in groups cultured under hypoxic conditions. bFGF in the culture medium significantly increased cell number/construct by 25%, regardless of culture conditions. For GAG/construct, synergistic increases were observed in constructs cultured in hypoxic conditions and bFGF (two-fold) when compared to constructs cultured in normoxic conditions. Compressive tests showed synergistic increases in the relaxation modulus and coefficient of viscosity and additive increases in the instantaneous modulus for constructs cultured under hypoxic conditions and bFGF, when compared to constructs cultured under normoxic conditions. Overall, these results demonstrate that bFGF and hypoxia can significantly enhance the ability of meniscus cells to produce GAGs and improve the compressive properties of tissue-engineered meniscus constructs in vitro.
Collapse
Affiliation(s)
- Najmuddin J Gunja
- Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | | |
Collapse
|
31
|
Attia E, Brown H, Henshaw R, George S, Hannafin JA. Patterns of gene expression in a rabbit partial anterior cruciate ligament transection model: the potential role of mechanical forces. Am J Sports Med 2010; 38:348-56. [PMID: 19966107 DOI: 10.1177/0363546509348052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The inconsistency in healing after anterior cruciate ligament (ACL) repair has been attributed to ACL fibroblast cellular metabolism, lack of a sufficient vascular supply, and the inability to form a scar or scaffold after ligament rupture because of the uniqueness of the intra-articular environment. Hypotheses (1) Stress deprivation in the surgically transected ACL will increase matrix metalloproteinase (MMP) and alpha smooth muscle actin (alpha-SMA) expression. (2) Stress deprivation will decrease collagen expression. (3) The transected anteromedial bundle of the ACL will demonstrate a pattern of gene expression similar to the completely transected ACL, while gene expression profiles in the intact posterolateral bundle will be similar to the sham-operated controls. STUDY DESIGN Controlled laboratory study. METHODS Thirty-six New Zealand White rabbits underwent a partial ACL surgical transection separating the anteromedial (AM) and posterolateral (PL) bundles and transecting the AM bundle. Contralateral ACLs were either sham operated or completely transected. Ligament tissue was harvested at 1, 2, or 6 weeks after surgery, and real-time PCR was performed using primers for collagen I, collagen III, alpha-SMA, MMP-1, and MMP-13. RESULTS At 1 week, a 28- and 29-fold increase in MMP-13 expression was seen in the complete transection and the transected AM bundle specimens when compared with sham-operated controls (P = .049, P = .018), respectively. There was no significant difference in MMP-13 between the sham controls and the intact PL bundle specimens. A 22- and 23-fold increase in alpha-SMA was seen (P = .03, P = .009) in the complete transection and transected AM bundle specimens, respectively, while no difference was seen between the intact PL bundle and controls. No significant differences were seen in collagen I (Col I) or collagen III (Col III) gene expression at 1 week. At 6 weeks, Col I expression increased 5-fold in complete transection samples (P = 3.9 x 10(-6)), 3-fold in transected AM samples (P = 3.3 x 10(-6)), and 2-fold in the intact PL bundle samples as compared with controls. alpha-SMA was increased 7.5-fold and 5-fold in complete transection and transected AM samples, respectively (P = .004, P = 2.2 x 10(-6)), while no significant change was seen in the intact PL bundle samples compared with controls. Complete transection specimens showed a 3-fold increase in MMP-1 expression. Col III increased 5.4-, 2.6-, and 2.4-fold in the complete transection, transected AM, and intact PL groups, respectively (P = .003, P = .004, P = .04). CONCLUSION Partial or complete surgical transection of the rabbit ACL with resultant loss of mechanical stimuli results in an increase in MMP-13 and alpha-SMA expression at the early time point (1 week) and an increase in alpha-SMA, Col I, and Col III expression at the later time point (6 weeks). These data provide support for the hypothesis that there is a time-dependent alteration of anabolic and catabolic matrix gene expression after injury/loss of ligament integrity. Clinical Relevance Identification of pathways that respond to mechanical stress in the intact ACL and after surgical transection may permit development of novel therapies to alter healing of the partial ACL injury or to assist in the development of biomechanical active ''smart'' scaffolds for tissue-engineered ligament replacements.
Collapse
Affiliation(s)
- Erik Attia
- Laboratory for Soft Tissue Research, Tissue Engineering Repair and Regeneration Program, Hospital for Special Surgery, New York, New York 10021, USA.
| | | | | | | | | |
Collapse
|
32
|
Sanchez-Adams J, Athanasiou KA. The Knee Meniscus: A Complex Tissue of Diverse Cells. Cell Mol Bioeng 2009. [DOI: 10.1007/s12195-009-0066-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
33
|
Zielinska B, Killian M, Kadmiel M, Nelsen M, Haut Donahue TL. Meniscal tissue explants response depends on level of dynamic compressive strain. Osteoarthritis Cartilage 2009; 17:754-60. [PMID: 19121588 DOI: 10.1016/j.joca.2008.11.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 11/28/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Following partial meniscectomy, the remaining meniscus is exposed to an altered loading environment. In vitro 20% dynamic compressive strains on meniscal tissue explants has been shown to lead to an increase in release of glycosaminoglycans from the tissue and increased expression of interleukin-1alpha (IL-1alpha). The goal of this study was to determine if compressive loading which induces endogenously expressed IL-1 results in downstream changes in gene expression of anabolic and catabolic molecules in meniscal tissue, such as MMP expression. METHOD Relative changes in gene expression of MMP-1, MMP-3, MMP-9, MMP-13, A Disintegrin and Metalloproteinase with ThromboSpondin 4 (ADAMTS4), ADAMTS5, TNFalpha, TGFbeta, COX-2, Type I collagen (COL-1) and aggrecan and subsequent changes in the concentration of prostaglandin E(2) released by meniscal tissue in response to varying levels of dynamic compression (0%, 10%, and 20%) were measured. Porcine meniscal explants were dynamically compressed for 2h at 1Hz. RESULTS 20% dynamic compressive strains upregulated MMP-1, MMP-3, MMP-13 and ADAMTS4 compared to no dynamic loading. Aggrecan, COX-2, and ADAMTS5 gene expression were upregulated under 10% strain compared to no dynamic loading while COL-1, TIMP-1, and TGFbeta gene expression were not dependent on the magnitude of loading. CONCLUSION This data suggests that changes in mechanical loading of the knee joint meniscus from 10% to 20% dynamic strain can increase the catabolic activity of the meniscus.
Collapse
Affiliation(s)
- B Zielinska
- Biotechnology Research Center, Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, United States
| | | | | | | | | |
Collapse
|
34
|
Gunja NJ, Uthamanthil RK, Athanasiou KA. Effects of TGF-beta1 and hydrostatic pressure on meniscus cell-seeded scaffolds. Biomaterials 2009; 30:565-73. [PMID: 18980779 PMCID: PMC2637152 DOI: 10.1016/j.biomaterials.2008.10.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 10/02/2008] [Indexed: 11/28/2022]
Abstract
The combinatorial effects of TGF-beta1 and hydrostatic pressure (HP) were investigated on meniscus cell-seeded PLLA constructs using a two-phase sequential study. The objective was to identify potentially synergistic effects of these stimuli toward enhancing the biomechanical and compositional characteristics of the engineered constructs. In Phase I, the effects of TGF-beta1 were examined on the ability of meniscus cells to produce ECM. In Phase II, meniscus cell-seeded PLLA constructs were cultured for 4 wks with a combination of TGF-beta1 and HP (10 MPa, 0 Hz or 10 MPa, 0.1 Hz). TGF-beta1 was found to increase collagen and GAG deposition in the scaffolds 15-fold and 8-fold, respectively, in Phase I. In Phase II, the combination of TGF-beta1 and 10 MPa, 0 Hz HP resulted in 4-fold higher collagen deposition (additive increase), 3-fold higher GAG deposition and enhanced compressive properties (additive and synergistic increases), when compared to the unpressurized no growth factor culture control. Though significant correlations were observed between the compressive properties (moduli and viscosity), and the GAG and collagen content of the constructs, the correlations were stronger with collagen. This study provides robust evidence that growth factors and HP can be used successfully in combination to enhance the functional properties of in vitro engineered knee meniscus constructs.
Collapse
Affiliation(s)
- Najmuddin J Gunja
- Department of Bioengineering, Rice University, MS-142, P.O. Box 1892, Houston, TX 77251-1892, USA.
| | | | | |
Collapse
|
35
|
|
36
|
Gupta T, Zielinska B, McHenry J, Kadmiel M, Haut Donahue TL. IL-1 and iNOS gene expression and NO synthesis in the superior region of meniscal explants are dependent on the magnitude of compressive strains. Osteoarthritis Cartilage 2008; 16:1213-9. [PMID: 18439846 DOI: 10.1016/j.joca.2008.02.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 02/22/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Partial meniscectomy is known to cause osteoarthritis (OA) of the underlying cartilage as well as alter the load on the remaining meniscus. Removal of 30-60% of the medial meniscus increases compressive strains from a maximum of approximately 10% to almost 20%. The goal of this study is to determine if meniscal cells produce catabolic molecules in response to the altered loading that results from a partial meniscectomy. METHOD Relative changes in gene expression of interleukin-1 (IL-1), inducible nitric oxide synthase (iNOS) and subsequent changes in the concentration of nitric oxide (NO) released by meniscal tissue in response to compression were measured. Porcine meniscal explants were dynamically compressed for 2 h at 1 Hz to simulate physiological stimulation at either 10% strain or 0.05 MPa stress. Additional explants were pathologically stimulated to either 0% strain, 20% strain or, 0.1 MPa stress. RESULTS iNOS and IL-1 gene expression and NO release into the surrounding media were increased at 20% compressive strain compared to other conditions. Pathological unloading (0% compressive strain) of meniscal explants did not significantly change expression of IL-1 or iNOS genes, but did result in an increased amount of NO released compared to physiological strain of 10%. CONCLUSION These data suggest that meniscectomies which reduce the surface area of the meniscus by 30-60% will increase the catabolic activity of the meniscus which may contribute to the progression of OA.
Collapse
Affiliation(s)
- T Gupta
- Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, United States
| | | | | | | | | |
Collapse
|
37
|
Asundi KR, Rempel DM. Cyclic loading inhibits expression of MMP-3 but not MMP-1 in an in vitro rabbit flexor tendon model. Clin Biomech (Bristol, Avon) 2008; 23:117-21. [PMID: 17892905 PMCID: PMC2441764 DOI: 10.1016/j.clinbiomech.2007.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/25/2007] [Accepted: 08/13/2007] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gene expression analysis is useful for assessing cellular behavior and may improve our understanding of the initial cellular response to mechanical load leading to tendon degeneration. This study assessed gene expression of MMP-1 and MMP-3, genes associated with matrix degradation, in tendons exposed to cyclic loads within physiologic range. METHODS Six flexor tendons from each of ten New Zealand White rabbits were harvested and randomly assigned to one of the following six groups: load deprived for 18h; cyclically loaded for 18h to a peak stress of 2MPa; 3MPa; 4MPa; 5MPa; or snap frozen in liquid nitrogen. MMP-1, MMP-3 and 18s mRNA expression was measured by qRT-PCR. FINDINGS No significant differences in MMP-1 mRNA expression levels were found between loading groups. MMP-3 expression was significantly inhibited (57%) in tendons cyclically loaded to a peak stress of 4MPa in comparison to load deprived tendons, however, when peak stress was increased to 5MPa, expression was no longer significantly lower compared to stress shielded tendons. INTERPRETATION The results suggest a 'U' shape relationship between load and MMP-3 expression. The lack of change in MMP-1 expression with loading was unexpected as inhibition of MMP-1 in response to mechanical load has been demonstrated in previous studies. In conclusion, we demonstrate that MMP-3 expression is modulated by cyclic load and is sensitive to load magnitude. MMP-1 mRNA expression is not significantly modulated by cyclic load in this model.
Collapse
Affiliation(s)
- Krishna R Asundi
- Joint Graduate Group in Bioengineering, University of California, Berkeley and San Francisco, CA, USA
| | | |
Collapse
|
38
|
Abstract
Injuries to the knee meniscus, particularly those in the avascular region, pose a complex problem and a possible solution is tissue engineering of a replacement tissue. Tissue engineering of the meniscus involves scaffold selection, addition of cells, and stimulation of the construct to synthesize, maintain, or enhance matrix production. An acellular collagen implant is currently in clinical trials and there are promising results with other scaffolds, composed of both polymeric and natural materials. The addition of cells to these constructs may promote good matrix production in vitro, but has been studied in a limited manner in animal studies. Cell sources ranging from fibroblasts to stem cells could be used to overcome challenges in cell procurement, expansion, and synthetic capacity currently encountered in studies with fibrochondrocytes. Manipulation of construct culture with exogenous growth factors and mechanical stimulation will also likely play a role in these strategies.
Collapse
Affiliation(s)
- Gwendolyn M Hoben
- Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | | |
Collapse
|