1
|
Kowalczyk K, Coraça-Huber DC, Wille-Kollmar W, Berktold M, Nagl M. Activity of N-Chlorotaurine against Periodontal Pathogens. Int J Mol Sci 2024; 25:8357. [PMID: 39125925 PMCID: PMC11313407 DOI: 10.3390/ijms25158357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Dental plaque bacteria play an important role in the pathogenicity of periodontitis and peri-implantitis. Therefore, antimicrobial agents are one means of treatment. N-chlorotaurine (NCT) as an endogenous well-tolerated topical antiseptic could be of advantage for this purpose. Accordingly, its microbicidal activity against some dental plaque bacteria was investigated at therapeutic concentrations in vitro. In quantitative killing assays, the activity of NCT against planktonic bacteria and against biofilms grown for 48 h on implantation screws was tested. Electron microscopy was used to demonstrate the formation of biofilm and its morphological changes. The killing of planktonic bacteria of all tested species, namely Streptococcus sanguinis, Streptococcus salivarius, Streptococcus oralis, Streptococcus cristatus, Rothia aeria, and Capnocytophaga ochracea, was shown within 10-20 min by 1% NCT in 0.01 M phosphate-buffered saline at 37 °C. Bacteria grown on screws for 24 h were inactivated by 1% NCT after 15-20 min as well, but the formation of biofilm on the screws was visible in electron microscopy not before 48 h. The killing of biofilms by 1% NCT was demonstrated after 30 min (streptococci) and 40 min (R. aeria). As expected, NCT has broad activity against dental plaque bacteria as well and should be further investigated on its clinical efficacy in periodontitis and peri-implantitis.
Collapse
Affiliation(s)
- Kacper Kowalczyk
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (K.K.); (M.B.)
| | - Débora C. Coraça-Huber
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
| | | | - Michael Berktold
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (K.K.); (M.B.)
| | - Markus Nagl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (K.K.); (M.B.)
| |
Collapse
|
2
|
Ashique S, Hussain A, Khan T, Pal S, Rihan M, Farid A, Webster TJ, Hassan MZ, Asiri YI. Insights into Intra Periodontal Pocket Pathogenesis, Treatment, In Vitro-In Vivo Models, Products and Patents, Challenges and Opportunity. AAPS PharmSciTech 2024; 25:121. [PMID: 38816555 DOI: 10.1208/s12249-024-02842-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Periodontal disease is a multifactorial pathogenic condition involving microbial infection, inflammation, and various systemic complications. Here, a systematic and comprehensive review discussing key-points such as the pros and cons of conventional methods, new advancements, challenges, patents and products, and future prospects is presented. A systematic review process was adopted here by using the following keywords: periodontal diseases, pathogenesis, models, patents, challenges, recent developments, and 3-D printing scaffolds. Search engines used were "google scholar", "web of science", "scopus", and "pubmed", along with textbooks published over the last few decades. A thorough study of the published data rendered an accurate and deep understanding of periodontal diseases, the gap of research so far, and future opportunities. Formulation scientists and doctors need to be interconnected for a better understanding of the disease to prescribe a quality product. Moreover, prime challenges (such as a lack of a vital testing model, scarcity of clinical and preclinical data, products allowing for high drug access to deeper tissue regions for prolonged residence, lack of an international monitoring body, lack of 4D or time controlled scaffolds, and lack of successful AI based tools) exist that must be addressed for designing new quality products. Generally, several products have been commercialized to treat periodontal diseases with certain limitations. Various strategic approaches have been attempted to target certain delivery regions, maximize residence time, improve efficacy, and reduce toxicity. Conclusively, the current review summarizes valuable information for researchers and healthcare professional to treat a wide range of periodontal diseases.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, School of Pharmacy, Bharat Institute of Technology (BIT), Meerut, 250103, UP, India
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Tasneem Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sejuti Pal
- School of Pharmacy, College of Health and Medicine, University of Tasmania, Churchill Ave, Sandybay, Hobart, TAS- 7005, Australia
| | - Mohd Rihan
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, 29050, Pakistan
| | - Thomas J Webster
- Division of Pre-college and Undergraduate Studies, Brown University, Providence, Rhode Island, 02912, USA.
| | - Mohd Zaheen Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Asir, Saudi Arabia
| | - Yahya I Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asiri, Saudi Arabia
| |
Collapse
|
3
|
Current Opinion on the Therapeutic Capacity of Taurine-Containing Halogen Derivatives in Infectious and Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:83-98. [DOI: 10.1007/978-3-030-93337-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Grimus V, Coraça-Huber DC, Steixner SJM, Nagl M. Activity of N-Chlorotaurine against Long-Term Biofilms of Bacteria and Yeasts. Antibiotics (Basel) 2021; 10:891. [PMID: 34438941 PMCID: PMC8388722 DOI: 10.3390/antibiotics10080891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Background: N-chlorotaurine (NCT), an antiseptic that originates from the human defense system, has broad-spectrum microbicidal activity and is well tolerated by human tissue and applicable to sensitive body regions. Bacteria in short-term biofilms, too, have been shown to be killed by NCT. It was the aim of the present study to demonstrate the activity of NCT against bacteria and yeasts in longer-lasting biofilms, including their co-culture. Materials and methods: Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella variicola biofilms were grown for 14 weeks in MBECTM inoculator with 96 well base. Some pegs were pinched off weekly and incubated in 1% NCT in PBS (PBS only for controls) at pH 7.1 and 37 °C, for 30 and 60 min. Subsequently, bacteria were resuspended by ultrasonication and subjected to quantitative cultures. Similar tests were conducted with C. albicans biofilms grown on metal (A2-steel) discs for 4 weeks. Mixed co-cultures of C. albicans plus each of the three bacterial strains on metal discs were grown for 5-7 weeks and weekly evaluated, as mentioned above. Results: Single biofilms of S. aureus, P. aeruginosa, and K. variicola grew to approximately 1 × 106 colony forming units (CFU)/mL and C. albicans to 1 × 105 CFU/mL. In combined biofilms, the CFU count was about 1 log10 lower. Viable counts of biofilms of single bacteria were reduced by 2.8 to 5.6 log10 in 1% NCT after 60 min (0.9 to 4.7 log10 after 30 min) with Gram-negative bacteria being more susceptible than S. aureus. Significant reduction of C. albicans by 2.0 to 2.9 log10 occurred after 4 h incubation. In combined biofilms, viable counts of C. albicans were reduced by 1.1 to 2.4 log10 after 4 h, while they reached the detection limit after 1 to 2 h with bacteria (2.0 to > 3.5 log10 reduction). Remarkably, older biofilms demonstrated no increase in resistance but constant susceptibility to NCT. This was valid for all tested pathogens. In electron microscopy, morphological differences between NCT-treated and non-treated biofilms could be found. Conclusions: NCT is active against long-term biofilms of up to several months irrespective of their age. Combined biofilm cultures of yeasts and bacteria show a similar susceptibility pattern to NCT as single ones. These results contribute to the explanation of the clinical efficacy of NCT, for instance, in infected chronic wounds and purulently coated crural ulcerations.
Collapse
Affiliation(s)
| | | | | | - Markus Nagl
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), Institute of Hygiene and Medical Microbiology, University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (V.G.); (D.C.C.-H.); (S.J.M.S.)
| |
Collapse
|
5
|
Osmanov A, Farooq Z, Richardson MD, Denning DW. The antiseptic Miramistin: a review of its comparative in vitro and clinical activity. FEMS Microbiol Rev 2021; 44:399-417. [PMID: 32386213 DOI: 10.1093/femsre/fuaa012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Miramistin is a topical antiseptic with broad antimicrobial action, including activity against biofilms and a clinical profile showing good tolerability. Miramistin was developed within a framework of the Soviet Union Cold War Space Program. It is available for clinical use in several prior Soviet bloc countries, but barely known outside of these countries and there is almost no mention of miramistin in the English literature. However, considering emerging antimicrobial resistance, the significant potential of miramistin justifies its re-evaluation for use in other geographical areas and conditions. The review consists of two parts: (i) a review of the existing literature on miramistin in English, Russian and Ukrainian languages; (ii) a summary of most commonly used antiseptics as comparators of miramistin. The oral LD50 was 1200 mg/kg, 1000 mg/kg and 100 g/L in rats, mice and fish, respectively. Based on the results of the review, we suggest possible applications of miramistin and potential benefits over currently used agents. Miramistin offers a novel, low toxicity antiseptic with many potential clinical uses that need better study which could address some of the negative impact of antimicrobial, antiseptic and disinfectant resistance.
Collapse
Affiliation(s)
- Ali Osmanov
- Next Level Diagnostics, Mikhailovsky lane 20,7, Kiev 01001, Ukraine
| | - Zara Farooq
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Malcolm D Richardson
- Mycology Reference Centre Manchester, University Hospital of South Manchester, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - David W Denning
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,National Aspergillosis Centre, University Hospital of South Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Wythenshawe Hospital Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| |
Collapse
|
6
|
Tartaglia GM, Tadakamadla SK, Connelly ST, Sforza C, Martín C. Adverse events associated with home use of mouthrinses: a systematic review. Ther Adv Drug Saf 2019; 10:2042098619854881. [PMID: 31579502 PMCID: PMC6759706 DOI: 10.1177/2042098619854881] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
Background Poor oral hygiene is strongly associated with oral and systemic diseases. Alongside mechanical tooth cleaning, the adjunctive use of mouthrinses has been widely advocated. Although research on the efficacy of various mouthrinse formulations is very active, there are a lack of conclusive data regarding their adverse effects. Methods We undertook a systematic review in accordance wih PRISMA guidelines of electronic databases of clinical trials of any duration with daily home use of mouthwashes, presenting clinical and subjective side effects (PROSPERO registration: CRD42016054037). Results After evaluating 614 titles and abstracts, 154 studies were selected for full-text analysis; 85 final papers were included. Based on the active ingredient in the test product, nine categories were created: cetyl pyridinium chloride, essential oils, chlorhexidine, triclosan, natural products, diclofenac, fluorides, delmopinol, and miscellaneous active substances. Most of the studies were of short duration (less than 6 months) with a defective 'methods' description; the reporting of adverse events often being overlooked. Both local morphological (oral mucosa and dental-crown staining, mucosal lesions) and functional (taste modifications, abnormal oral sensation) alterations were reported. Tooth staining was the most commonly listed adverse event, but it was quantitatively assessed only in a very small number of papers; most studies relied on patient reports. Staining was time associated; the longer the study, the higher its reported incidence and severity. Conclusions The reduced report of side effects may partly be due to a lack of an objective measure and lack of general guidelines that demand studies report their adverse events. The most frequently reported adverse effect was teeth staining. As in most studies, the effect was associated with trial duration; clinical trials should be of sufficient duration. New investigations meeting the suggested criteria of a minimal duration of 6 months should be planned.
Collapse
Affiliation(s)
- Gianluca M Tartaglia
- Department of Biomedical Sciences for Health, Functional Anatomy Research Centre (FARC), Università degli Studi di Milano, Via Luigi Mangiagalli 31, Milano, MI 20133, Italy Private Practice, SST Dental Clinic, Via Martiri della Libertà 58, 20090 Segrate, MI, Italy
| | | | - Stephen Thaddeus Connelly
- San Francisco Veterans Affairs Health System, University of California San Francisco, San Francisco, CA, USA
| | - Chiarella Sforza
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Conchita Martín
- Facultad de Odontología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
7
|
N-Chlorotaurine, a Promising Future Candidate for Topical Therapy of Fungal Infections. Mycopathologia 2017; 183:161-170. [PMID: 28702855 PMCID: PMC5773618 DOI: 10.1007/s11046-017-0175-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022]
Abstract
N-Chlorotaurine (NCT) is a mild long-lived oxidant that can be applied to sensitive body regions as an endogenous antiseptic. Enhancement of its microbicidal activity in the presence of proteinaceous material because of transchlorination, a postantibiotic/postantifungal effect and antitoxic activity renders it interesting for treatment of fungal infections, too. This is confirmed by first case applications in skin and mucous membranes of different body sites. Recent findings of good tolerability of inhaled NCT suggest further investigations of this substance for treatment of bronchopulmonary diseases, where microorganisms play a role, particularly multi-resistant ones. The availability of a well-tolerated and effective inhaled antiseptic with anti-inflammatory properties could be a significant progress, in particular for chronic pulmonary diseases, such as chronic obstructive pulmonary disease or cystic fibrosis.
Collapse
|
8
|
N-Chlorotaurine Exhibits Fungicidal Activity against Therapy-Refractory Scedosporium Species and Lomentospora prolificans. Antimicrob Agents Chemother 2015; 59:6454-62. [PMID: 26239996 DOI: 10.1128/aac.00957-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/24/2015] [Indexed: 01/26/2023] Open
Abstract
N-Chlorotaurine (NCT), a well-tolerated endogenous long-lived oxidant that can be applied topically as an antiseptic, was tested on its fungicidal activity against Scedosporium and Lomentospora, opportunistic fungi that cause severe infections with limited treatment options, mainly in immunocompromised patients. In quantitative killing assays, both hyphae and conidia of Scedosporium apiospermum, Scedosporium boydii, and Lomentospora prolificans (formerly Scedosporium prolificans) were killed by 55 mM (1.0%) NCT at pH 7.1 and 37°C, with a 1- to 4-log10 reduction in CFU after 4 h and a 4- to >6-log10 reduction after 24 h. The addition of ammonium chloride to NCT markedly increased this activity. LIVE/DEAD staining of conidia treated with 1.0% NCT for 0.5 to 3 h increased the permeability of the cell wall and membrane. Preincubation of the test fungi in 1.0% NCT for 10 to 60 min delayed the time to germination of conidia by 2 h to >12 h and reduced their germination rate by 10.0 to 100.0%. Larvae of Galleria mellonella infected with 1.0 × 10(7) conidia of S. apiospermum and S. boydii died at a rate of 90.0 to 100% after 8 to 12 days. The mortality rate was reduced to 20 to 50.0% if conidia were preincubated in 1.0% NCT for 0.5 h or if heat-inactivated conidia were used. Our study demonstrates the fungicidal activity of NCT against different Scedosporium and Lomentospora species. A postantifungal effect connected with a loss of virulence occurs after sublethal incubation times. The augmenting effect of ammonium chloride can be explained by the formation of monochloramine.
Collapse
|
9
|
Gulati M, Anand V, Govila V, Jain N. Host modulation therapy: An indispensable part of perioceutics. J Indian Soc Periodontol 2014; 18:282-8. [PMID: 25024538 PMCID: PMC4095617 DOI: 10.4103/0972-124x.134559] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/29/2013] [Indexed: 11/04/2022] Open
Abstract
Traditionally, only antimicrobials have been used as the chemotherapeutic modality for the treatment of periodontitis. Though bacteria are the primary etiologic factors of periodontal diseases, yet the extent and severity of tissue destruction seen in periodontitis is determined by the host immuno-inflammatory response to these bacteria. This increasing awareness and knowledge of the host-microbial interaction in periodontal pathogenesis has presented the opportunity for exploring new therapeutic strategies for periodontitis by means of targeting host response via host-modulating agents. This has lead to the emergence of the field of "Perioceutics" i.e. the use of parmacotherapeutic agents including antimicrobial therapy as well as host modulatory therapy for the management of periodontitis. These host-modulating agents used as an adjunct tip the balance between periodontal health and disease progression in the direction of a healing response. In this article the host-modulating role of various systemically and locally delivered perioceutic agents will be reviewed.
Collapse
Affiliation(s)
- Minkle Gulati
- Department of Periodontics, Babu Banarasi Das College of Dental Sciences, Babu Banarasi Das University, Lucknow, India
| | - Vishal Anand
- Department of Periodontics, Chhatrapati Shahuji Maharaj Medical University, Lucknow, India
| | - Vivek Govila
- Department of Periodontics, Babu Banarasi Das College of Dental Sciences, Babu Banarasi Das University, Lucknow, India
| | - Nikil Jain
- Department of Oral and Maxillofacial Surgery, Vinayaka Missions Sankarachariyar Dental College, Salem, Tamil Nadu, India
| |
Collapse
|
10
|
N-chloramines, a promising class of well-tolerated topical anti-infectives. Antimicrob Agents Chemother 2013; 57:1107-14. [PMID: 23295936 DOI: 10.1128/aac.02132-12] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antibiotic resistance is a growing public health crisis. To address the development of bacterial resistance, the use of antibiotics has to be minimized for nonsystemic applications in humans, as well as in animals and plants. Possible substitutes with low potential for developing resistance are active chlorine compounds that have been in clinical use for over 180 years. These agents are characterized by pronounced differences in their chlorinating and/or oxidizing activity, with hypochlorous acid (HOCl) as the strongest and organic chloramines as the weakest members. Bacterial killing in clinical practice is often associated with unwanted side effects such as chlorine consumption, tissue irritation, and pain, increasing proportionally with the chlorinating/oxidizing potency. Since the chloramines are able to effectively kill pathogens (bacteria, fungi, viruses, protozoa), their application as anti-infectives is advisable, all the more so as they exhibit additional beneficial properties such as destruction of toxins, degradation of biofilms, and anticoagulative and anti-inflammatory activities. Within the ample field of chloramines, the stable N-chloro derivatives of β-aminosulfonic acids are most therapeutically advanced. Being available as sodium salts, they distinguish themselves by good solubility and absence of smell. Important representatives are N-chlorotaurine, a natural compound occurring in the human immune system, and novel mono- and dichloro derivatives of dimethyltaurine, which feature improved stability.
Collapse
|
11
|
Singh A, Daing A, Dixit J. The effect of herbal, essential oil and chlorhexidine mouthrinse on de novo plaque formation. Int J Dent Hyg 2012; 11:48-52. [DOI: 10.1111/j.1601-5037.2012.00556.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Gottardi W, Nagl M. N-chlorotaurine, a natural antiseptic with outstanding tolerability. J Antimicrob Chemother 2010; 65:399-409. [PMID: 20053689 DOI: 10.1093/jac/dkp466] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
N-chlorotaurine, the N-chloro derivative of the amino acid taurine, is a long-lived oxidant produced by activated human granulocytes and monocytes. Supported by a high number of in vitro studies, it has mainly anti-inflammatory properties and seems to be involved in the termination of inflammation. The successful synthesis of the crystalline sodium salt (Cl-HN-CH(2)-CH(2)-SO(3)Na, NCT) facilitated its development as an endogenous antiseptic. NCT can be stored long-term at low temperatures, and it has killing activity against bacteria, fungi, viruses and parasites. Transfer of the active chlorine to amino groups of molecules of both the pathogens and the human body (transhalogenation) enhances rather than decreases its activity, mainly because of the formation of monochloramine. Furthermore, surface chlorination after sublethal incubation times in NCT leads to a post-antibiotic effect and loss of virulence of pathogens, as demonstrated for bacteria and yeasts. Being a mild oxidant, NCT proved to be very well tolerated by human tissue in Phase I and II clinical studies. A 1% aqueous solution can be applied to the eye, skin ulcerations, outer ear canal, nasal and paranasal sinuses, oral cavity and urinary bladder, and can probably be used for inhalation. Therapeutic efficacy in Phase II studies has been shown in external otitis, purulently coated crural ulcerations and keratoconjunctivitis, so far. Based upon all presently available data, NCT seems to be an antiseptic with a very good relation between tolerability and activity. Recently, C-methylated derivatives of NCT have been invented, which are of interest because of improved stability at room temperature.
Collapse
Affiliation(s)
- Waldemar Gottardi
- Department of Hygiene, Microbiology and Social Medicine, Division of Hygiene and Medical Microbiology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | |
Collapse
|