1
|
Novel In Situ-Cross-Linked Electrospun Gelatin/Hydroxyapatite Nonwoven Scaffolds Prove Suitable for Periodontal Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14061286. [PMID: 35745858 PMCID: PMC9230656 DOI: 10.3390/pharmaceutics14061286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
Periodontal diseases affect millions of people worldwide and can result in tooth loss. Regenerative treatment options for clinical use are thus needed. We aimed at developing new nonwoven-based scaffolds for periodontal tissue engineering. Nonwovens of 16% gelatin/5% hydroxyapatite were produced by electrospinning and in situ glyoxal cross-linking. In a subset of scaffolds, additional porosity was incorporated via extractable polyethylene glycol fibers. Cell colonization and penetration by human mesenchymal stem cells (hMSCs), periodontal ligament fibroblasts (PDLFs), or cocultures of both were visualized by scanning electron microscopy and 4′,6-diamidin-2-phenylindole (DAPI) staining. Metabolic activity was assessed via Alamar Blue® staining. Cell type and differentiation were analyzed by immunocytochemical staining of Oct4, osteopontin, and periostin. The electrospun nonwovens were efficiently populated by both hMSCs and PDLFs, while scaffolds with additional porosity harbored significantly more cells. The metabolic activity was higher for cocultures of hMSCs and PDLFs, or for PDLF-seeded scaffolds. Periostin and osteopontin expression was more pronounced in cocultures of hMSCs and PDLFs, whereas Oct4 staining was limited to hMSCs. These novel in situ-cross-linked electrospun nonwoven scaffolds allow for efficient adhesion and survival of hMSCs and PDLFs. Coordinated expression of differentiation markers was observed, which rendered this platform an interesting candidate for periodontal tissue engineering.
Collapse
|
2
|
Lin Z, Nica C, Sculean A, Asparuhova MB. Positive Effects of Three-Dimensional Collagen-Based Matrices on the Behavior of Osteoprogenitors. Front Bioeng Biotechnol 2021; 9:708830. [PMID: 34368101 PMCID: PMC8334008 DOI: 10.3389/fbioe.2021.708830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Recent research has demonstrated that reinforced three-dimensional (3D) collagen matrices can provide a stable scaffold for restoring the lost volume of a deficient alveolar bone. In the present study, we aimed to comparatively investigate the migratory, adhesive, proliferative, and differentiation potential of mesenchymal stromal ST2 and pre-osteoblastic MC3T3-E1 cells in response to four 3D collagen-based matrices. Dried acellular dermal matrix (DADM), hydrated acellular dermal matrix (HADM), non-crosslinked collagen matrix (NCM), and crosslinked collagen matrix (CCM) did all enhance the motility of the osteoprogenitor cells. Compared to DADM and NCM, HADM and CCM triggered stronger migratory response. While cells grown on DADM and NCM demonstrated proliferative rates comparable to control cells grown in the absence of a biomaterial, cells grown on HADM and CCM proliferated significantly faster. The pro-proliferative effects of the two matrices were supported by upregulated expression of genes regulating cell division. Increased expression of genes encoding the adhesive molecules fibronectin, vinculin, CD44 antigen, and the intracellular adhesive molecule-1 was detected in cells grown on each of the scaffolds, suggesting excellent adhesive properties of the investigated biomaterials. In contrast to genes encoding the bone matrix proteins collagen type I (Col1a1) and osteopontin (Spp1) induced by all matrices, the expression of the osteogenic differentiation markers Runx2, Alpl, Dlx5, Ibsp, Bglap2, and Phex was significantly increased in cells grown on HADM and CCM only. Short/clinically relevant pre-coating of the 3D biomaterials with enamel matrix derivative (EMD) or recombinant bone morphogenetic protein-2 (rBMP-2) significantly boosted the osteogenic differentiation of both osteoprogenitor lines on all matrices, including DADM and NCM, indicating that EMD and BMP-2 retained their biological activity after being released from the matrices. Whereas EMD triggered the expression of all osteogenesis-related genes, rBMP-2 upregulated early, intermediate, and late osteogenic differentiation markers except for Col1a1 and Spp1. Altogether, our results support favorable influence of HADM and CCM on the recruitment, growth, and osteogenic differentiation of the osteoprogenitor cell types. Furthermore, our data strongly support the biofunctionalization of the collagen-based matrices with EMD or rBMP-2 as a potential treatment modality for bone defects in the clinical practice.
Collapse
Affiliation(s)
- Zhikai Lin
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Cristina Nica
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Maria B Asparuhova
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Sato M, Aoki H, Nakamura T, Onodera S, Yamaguchi A, Saito A, Azuma T. Effects of intermittent treatment with parathyroid hormone (PTH) on osteoblastic differentiation and mineralization of mouse induced pluripotent stem cells in a 3D culture model. J Periodontal Res 2020; 55:734-743. [PMID: 32583900 DOI: 10.1111/jre.12762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/10/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND/OBJECTIVES PTH plays an important role in bone remodeling, and different actions have been reported depending on its administration method. iPSCs are promising as a cell source for regeneration of periodontal tissue due to their ability of proliferation and pluripotency. However, the effects of PTH on iPSCs remain mostly unknown. The purpose of this study was to investigate in vitro effects of parathyroid hormone (PTH) on osteoblastic differentiation of induced pluripotent stem cells (iPSCs) in a 3D culture model. MATERIALS AND METHODS Following embryoid body (EB) induction from mouse iPSCs (miPSCs), dissociated cells (miPS-EB-derived cells) were seeded onto atelocollagen sponge (ACS) in osteoblast differentiation medium (OBM). Cell-ACS constructs were divided into three groups: continuous treatment with human recombinant PTH (1-34) (PTH-C), intermittent PTH treatment (PTH-I) or OBM control. To confirm the expression of PTH receptor-1(PTH1R), the expression of Pth1r and cAMP production over time were assessed. Real-time PCR was used to assess the expression of genes encoding osterix (Sp7), runt-related transcription factor 2 (Runx2), collagen type 1 (Col1a1), and osteocalcin (Bglap) at different time points. Mineralization was assessed by von Kossa staining. Histochemical staining was used to analyze alkaline phosphatase (ALP) activity, and immunolocalization of SP7 and BGLAP was analyzed by confocal laser scanning microscopy (CLSM). RESULTS On days 7 and 14, expression of the Pth1r in miPS-EB-derived cells was increased in all groups. Production of cAMP, the second messenger of the PTH1R, tended to increase in the PTH-I group compared with PTH-C group on day 14. Expression of Col1a1 in the PTH-I group on day 14 was significantly higher than other groups. There was a time-dependent increase in the expression of Sp7 in all groups. On day 14, the expression level of Sp7 in the PTH-I group was significantly higher than other groups. In von Kossa staining, the PTH-I group showed higher level of staining compared with other groups on day 14, whereas the level was slightly attenuated in the PTH-C group. In histochemical staining, ALP-positive cells were significantly increased in the PTH-I group compared with other groups on day 14. In CLSM analysis, the numbers of SP7- and BGLAP-positive cells showed a gradual increase over time, and on day 14, a significantly greater SP7 expression was observed in the PTH-I group than other groups. CONCLUSION These results suggested that the intermittent PTH treatment promotes osteoblastic differentiation and mineralization of miPSCs in the ACS scaffold.
Collapse
Affiliation(s)
- Masahiro Sato
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Hideto Aoki
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Takashi Nakamura
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan.,Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Shoko Onodera
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan.,Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Akira Yamaguchi
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Toshifumi Azuma
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan.,Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
4
|
Development and application of a 3D periodontal in vitro model for the evaluation of fibrillar biomaterials. BMC Oral Health 2020; 20:148. [PMID: 32429904 PMCID: PMC7238548 DOI: 10.1186/s12903-020-01124-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Periodontitis is a chronic inflammation of the tooth supporting structures that finally can lead to tooth loss. As chronic periodontitis is associated with systemic diseases multiple approaches have been followed to support regeneration of the destructed tissue. But very few materials are actually used in the clinic. A new and promising group of biomaterials with advantageous biomechanical properties that have the ability to support periodontal regeneration are self-assembling peptides (SAP). However, there is still a lack of 3D periodontal models that can evaluate the migration potential of such novel materials. Methods All experiments were performed with primary human periodontal ligament fibroblasts (HPLF). Migration capacity was assessed in a three-dimensional model of the human periodontal ligament by measuring the migration distance of viable cells on coated (Enamel Matrix Protein (EMP), P11–4, collagen I) or uncoated human dentin. Cellular metabolic activity on P11–4 hydrogels was assessed by a metabolic activity assay. Deposition of ECM molecules in a P11–4 hydrogel was visualized by immunostaining of collagen I and III and fibrillin I. Results The 3D periodontal model was feasible to show the positive effect of EMP for periodontal regeneration. Subsequently, self-assembling peptide P11–4 was used to evaluate its capacity to support regenerative processes in the 3D periodontal model. HPLF coverage of the dentin surface coated with P11–4 increased significantly over time, even though delayed compared to EMP. Cell viability increased and inclusion of ECM proteins into the biomaterial was shown. Conclusion The presented results indicate that the 3D periodontal model is feasible to assess periodontal defect coverage and that P11–4 serves as an efficient supporter of regenerative processes in the periodontal ligament. Clinical relevance The establishment of building-block synthetic polymers offers new opportunities for clinical application in dentistry. Self-assembling peptides represent a new generation of biomaterials as they are able to respond dynamically to the changing environment of the biological surrounding. Especially in the context of peri-implant disease prevention and treatment they enable the implementation of new concepts.
Collapse
|
5
|
Mercado F, Hamlet S, Ivanovski S. Regenerative surgical therapy for peri-implantitis using deproteinized bovine bone mineral with 10% collagen, enamel matrix derivative and Doxycycline-A prospective 3-year cohort study. Clin Oral Implants Res 2018; 29:583-591. [DOI: 10.1111/clr.13256] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Faustino Mercado
- School of Dentistry and Oral Health; Griffith University; Gold Coast Qld Australia
| | - Stephen Hamlet
- School of Dentistry and Oral Health; Griffith University; Gold Coast Qld Australia
- Menzies Health Institute; Griffith University; Gold Coast Qld Australia
| | - Saso Ivanovski
- School of Dentistry and Oral Health; Griffith University; Gold Coast Qld Australia
- Menzies Health Institute; Griffith University; Gold Coast Qld Australia
| |
Collapse
|
6
|
Hisanaga Y, Suzuki E, Aoki H, Sato M, Saito A, Saito A, Azuma T. Effect of the combined use of enamel matrix derivative and atelocollagen sponge scaffold on osteoblastic differentiation of mouse induced pluripotent stem cells in vitro. J Periodontal Res 2017; 53:240-249. [PMID: 29044527 DOI: 10.1111/jre.12511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Induced pluripotent stem cells (iPSCs) are a candidate cell source in periodontal regenerative therapy. Enamel matrix derivative (EMD) has been shown to regenerate periodontal tissues, and atelocollagen sponge (ACS) is considered a suitable scaffold or carrier for growth factors. This study aimed to investigate the effect of combined use of EMD and an ACS scaffold on cell behaviors and differentiation of mouse iPSCs (miPSCs) in vitro. MATERIAL AND METHODS Following embryonic body formation from miPSCs, dissociated cells (miPS-EB-derived cells) were seeded onto ACS with or without EMD, and cultured in osteoblast differentiation medium. Scanning electron microscopy and histological analyses were used to assess cell morphology and infiltration within the ACS. Cell viability (metabolism) was determined using an MTS assay, and expression of mRNA of osteoblastic differentiation markers was assessed by quantitative RT -PCR. Alkaline phosphatase (ALP) staining intensity and activity were evaluated. Mineralization was assessed by von Kossa staining, and calcium content was quantitated using the methylxylenol blue method. RESULTS By 24 hours after seeding, miPS-EB-derived cells in both the EMD and control groups had attached to and infiltrated the ACS scaffold. Scanning electron microscopy images revealed that by day 14, many cytoplasmic protrusions and extracellular deposits, suggestive of calcified matrix, were present in the EMD group. There was a time-dependent increase in cell viability up to day 3, but no difference between groups was observed at any time point. The levels expressed of ALP and osterix genes were significantly higher in the EMD group than in the control group. Expression of runt-related transcription factor 2 was increased in the EMD group compared with the control group on day 7. EMD upregulated the expression of bone sialoprotein and osteopontin on day 14, whereas expression of osteocalcin was lower at all time points. The staining intensity and activity of ALP were higher in the EMD group than in the control group. Mineralization levels and calcium contents were significantly higher in the EMD group throughout the observation period. CONCLUSION These data suggest that combining ACS with EMD increases levels of osteoblastic differentiation and mineralization in miPS-EB-derived cells, compared with ACS used alone.
Collapse
Affiliation(s)
- Y Hisanaga
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - E Suzuki
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - H Aoki
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - M Sato
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - A Saito
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - A Saito
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - T Azuma
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
7
|
Wen B, Shafer D, Schleier P, Pendrys D, Kuhn L, Freilich M. Implant-guided supracrestal alveolar bone growth using scaffolds, BMP-2, and novel scaffold-retaining device. Clin Oral Implants Res 2017; 28:1411-1420. [DOI: 10.1111/clr.13005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Bo Wen
- Department of Oral & Maxillofacial Surgery; Division of Implant Dentistry; Nanjing Stomatological Hospital; Medical School of Nanjing University; Nanjing China
| | - David Shafer
- Department of Craniofacial Sciences; Division of Oral & Maxillofacial Surgery; School of Dental Medicine; University of Connecticut; Farmington CT USA
| | - Peter Schleier
- Department of head and neck; Stavanger University Hospital; Stavanger Norway
| | - David Pendrys
- Department of Reconstructive Sciences; School of Dental Medicine; University of Connecticut; Farmington CT USA
| | - Liisa Kuhn
- Department of Reconstructive Sciences; Center for Biomaterials; School of Dental Medicine; University of Connecticut; Farmington CT USA
| | - Martin Freilich
- Department of Reconstructive Sciences; Center for Biomaterials; School of Dental Medicine; University of Connecticut; Farmington CT USA
| |
Collapse
|
8
|
Weinreb M, Nemcovsky CE. In vitro models for evaluation of periodontal wound healing/regeneration. Periodontol 2000 2017; 68:41-54. [PMID: 25867978 DOI: 10.1111/prd.12079] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2014] [Indexed: 12/14/2022]
Abstract
Periodontal wound healing and regeneration are highly complex processes, involving cells, matrices, molecules and genes that must be properly choreographed and orchestrated. As we attempt to understand and influence these clinical entities, we need experimental models to mimic the various aspects of human wound healing and regeneration. In vivo animal models that simulate clinical situations of humans can be costly and cumbersome. In vitro models have been devised to dissect wound healing/regeneration processes into discrete, analyzable steps. For soft tissue (e.g. gingival) healing, in vitro models range from simple culture of cells grown in monolayers and exposed to biological modulators or physical effectors and materials, to models in which cells are 'injured' by scraping and subsequently the 'wound' is filled with new or migrating cells, to three-dimensional models of epithelial-mesenchymal recombination or tissue explants. The cells employed are gingival keratinocytes, fibroblasts or endothelial cells, and their proliferation, migration, attachment, differentiation, survival, gene expression, matrix production or capillary formation are measured. Studies of periodontal regeneration also include periodontal ligament fibroblasts or progenitors, osteoblasts or osteoprogenitors, and cementoblasts. Regeneration models measure cellular proliferation, attachment and migration, as well as gene expression, transfer and differentiation into a mineralizing phenotype and biomineralization. Only by integrating data from models on all levels (i.e. a single cell to the whole organism) can various critical aspects of periodontal wound healing/regeneration be fully evaluated.
Collapse
|
9
|
Hotta Y, Ito K, Komatsu S, Saito T. Case presentation of two patients using diagonal platform-switched double implants for maxillary single-first-molar replacement as the alternative of a single-tooth implant. Int J Implant Dent 2016; 1:29. [PMID: 27747651 PMCID: PMC5005747 DOI: 10.1186/s40729-015-0031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
A single-tooth implant restoration is generally performed for maxillary single-first-molar replacement. If the interdental space between the second premolar and the second molar is large enough, a double-implant placement can be performed to avoid creating mesiodistal cantilever and to distribute occlusal loading forces. If there is not adequate space for a double-implant placement to be performed mesiodistally along the crest of the alveolar ridge line, they should be placed along a diagonal line offset lingually to increase the space. This procedure has two primary advantages. First, greater stability is provided by a double-implant placement. Resistance to lateral forces (palatal-buccal) is much stronger than two implants placed along the alveolar crest ridge line. Residual palatal and buccal bone can provide support against occlusal forces, provided that there is adequate residual bone in these regions. If anatomical conditions are favorable, the placement of two diagonal implants in the palatal and buccal residual bones can be a rational procedure. We report on two typical patients. The progress of these patients was followed using computed tomography for 7 and 6 years, respectively.
Collapse
Affiliation(s)
- Yasunori Hotta
- Aichi Implant Center, Hotta Dental Clinic, 13, Morimaki-cho, Moriyama-ku, Nagoya, 463-0073, Japan.
| | - Koji Ito
- Aichi Implant Center, Hotta Dental Clinic, 13, Morimaki-cho, Moriyama-ku, Nagoya, 463-0073, Japan
| | - Shinichi Komatsu
- Aichi Implant Center, Hotta Dental Clinic, 13, Morimaki-cho, Moriyama-ku, Nagoya, 463-0073, Japan
| | - Takashi Saito
- Aichi Implant Center, Hotta Dental Clinic, 13, Morimaki-cho, Moriyama-ku, Nagoya, 463-0073, Japan
| |
Collapse
|
10
|
Lappalainen OP, Karhula SS, Haapea M, Kauppinen S, Finnilä M, Saarakkala S, Serlo W, Sándor GK. Micro-CT Analysis of Bone Healing in Rabbit Calvarial Critical-Sized Defects with Solid Bioactive Glass, Tricalcium Phosphate Granules or Autogenous Bone. EJOURNAL OF ORAL MAXILLOFACIAL RESEARCH 2016; 7:e4. [PMID: 27489608 PMCID: PMC4970504 DOI: 10.5037/jomr.2016.7204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/13/2016] [Indexed: 12/15/2022]
Abstract
Objectives The purpose of the present study was to evaluate bone healing in rabbit critical-sized calvarial defects using two different synthetic scaffold materials, solid biodegradable bioactive glass and tricalcium phosphate granules alongside solid and particulated autogenous bone grafts. Material and Methods Bilateral full thickness critical-sized calvarial defects were created in 15 New Zealand white adult male rabbits. Ten defects were filled with solid scaffolds made of bioactive glass or with porous tricalcium phosphate granules. The healing of the biomaterial-filled defects was compared at the 6 week time point to the healing of autologous bone grafted defects filled with a solid cranial bone block in 5 defects and with particulated bone combined with fibrin glue in 10 defects. In 5 animals one defect was left unfilled as a negative control. Micro-computed tomography (micro-CT) was used to analyze healing of the defects. Results Micro-CT analysis revealed that defects filled with tricalcium phosphate granules showed new bone formation in the order of 3.89 (SD 1.17)% whereas defects treated with solid bioactive glass scaffolds showed 0.21 (SD 0.16)%, new bone formation. In the empty negative control defects there was an average new bone formation of 21.8 (SD 23.7)%. Conclusions According to findings in this study, tricalcium phosphate granules have osteogenic potential superior to bioactive glass, though both particulated bone with fibrin glue and solid bone block were superior defect filling materials.
Collapse
Affiliation(s)
- Olli-Pekka Lappalainen
- Department of Oral and Maxillofacial Surgery, Research Group in Tissue Engineering, Faculty of Medicine, Medical Research Center, University of Oulu, Oulu University Hospital, Oulu Finland
| | - Sakari S Karhula
- Department of Medical Imaging, Physics and Technology, Research Unit, Faculty of Medicine, Medical Research Center, University of Oulu, OuluFinland.; Department of Diagnostic Radiology, Oulu University Hospital, Medical Research Center, University of Oulu, OuluFinland
| | - Marianne Haapea
- Department of Diagnostic Radiology, Oulu University Hospital, Medical Research Center, University of Oulu, Oulu Finland
| | - Sami Kauppinen
- Department of Medical Imaging, Physics and Technology, Research Unit, Faculty of Medicine, Medical Research Center, University of Oulu, OuluFinland.; Department of Diagnostic Radiology, Oulu University Hospital, Medical Research Center, University of Oulu, OuluFinland
| | - Mikko Finnilä
- Department of Medical Imaging, Physics and Technology, Research Unit, Faculty of Medicine, Medical Research Center, University of Oulu, OuluFinland.; Department of Applied Physics, University of Eastern Finland, KuopioFinland
| | - Simo Saarakkala
- Department of Medical Imaging, Physics and Technology, Research Unit, Faculty of Medicine, Medical Research Center, University of Oulu, OuluFinland.; Department of Diagnostic Radiology, Oulu University Hospital, Medical Research Center, University of Oulu, OuluFinland
| | - Willy Serlo
- Department of Pediatric Surgery, PEDEGO Research Center, Oulu University Hospital, Medical Research Center, Uinversity of Oulu, Oulu Finland
| | - George K Sándor
- Department of Oral and Maxillofacial Surgery, Research Group in Tissue Engineering, Faculty of Medicine, Medical Research Center, University of Oulu, Oulu University Hospital, Oulu Finland
| |
Collapse
|
11
|
Lim HC, Lee JS, Jung UW, Choi SH. Bone Regenerative Potential of Enamel Matrix Protein in the Circumferential Defect Around a Dental Implant. IMPLANT DENT 2016; 25:179-85. [DOI: 10.1097/id.0000000000000383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Wen B, Li Z, Nie R, Liu C, Zhang P, Miron RJ, Dard MM. Influence of biphasic calcium phosphate surfaces coated with Enamel Matrix Derivative on vertical bone growth in an extra-oral rabbit model. Clin Oral Implants Res 2015; 27:1297-1304. [PMID: 26689728 DOI: 10.1111/clr.12740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Bo Wen
- Department of Oral & Maxillofacial Surgery; Nanjing Stomatological Hospital; Medical School of Nanjing University; Nanjing China
| | - Zhen Li
- Department of Oral & Maxillofacial Surgery; Nanjing Stomatological Hospital; Medical School of Nanjing University; Nanjing China
| | - Rongrong Nie
- Department of Prosthdontics; Nanjing Stomatological Hospital; Medical School of Nanjing University; Nanjing China
| | - Chao Liu
- Department of Orthodontics; Nanjing Stomatological Hospital; Medical School of Nanjing University; Nanjing China
| | - Peng Zhang
- Department of Prosthdontics; Nanjing Stomatological Hospital; Medical School of Nanjing University; Nanjing China
| | - Richard J. Miron
- Department of Periodontology; Department of Oral Surgery and Stomatology; School of Dental Medicine; University of Bern; Bern Switzerland
| | - Michel M. Dard
- Department of Periodontology and Implant Dentistry; College of Dentistry; New York University; New York NY USA
| |
Collapse
|
13
|
Tissue reactions after simultaneous alveolar ridge augmentation with biphasic calcium phosphate and implant insertion--histological and immunohistochemical evaluation in humans. Clin Oral Investig 2014; 19:1595-603. [PMID: 25511386 DOI: 10.1007/s00784-014-1385-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/03/2014] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Simultaneous lateral augmentation and implant placement is considered as standard procedure in deficient edentulous ridges in oral implantology. Histological studies monitoring osteogenesis after application of alloplastic bone substitutes in humans are scarce. Bone formation upon simultaneous augmentation with biphasic calcium phosphate (BCP) and implantation was histologically investigated after 6 months in situ. The results of this secondary analysis are reported tempting to ascribe specific observations to uneventful submerged healing or compromised healing of soft tissues including occurrence of dehiscences and premature graft exposure. MATERIALS AND METHODS Histology of biopsies from lateral, crestal bone augmentations using alloplastic BCP comprising seven sites with compromised, prematurely exposed healing and six sites with uneventful submerged healing was investigated for expression of osteogenic, osteoclastogenic, and angiogenic differentiation markers. RESULTS Histology revealed alkaline phosphatase (ALP)-positive osteoblasts and immunoreactivity for osteogenic markers osteocalcin and collagen type I in biopsies with submerged healing, while inflammatory infiltrates and accumulations of multinucleated giant cells around BCP granules were observed in compromised sites. All specimens presented adequate vessel density. Multinucleated giant cells showed inconsistent staining for the osteoclast marker tartrate-resistant acid phosphatase (TRAP). CONCLUSIONS The histological findings of this study indicate an osteoconductive nature of the BCP applied. Premature exposure of the bone substitute reduced new bone formation and may bear a risk for inflammatory and foreign body reactions. CLINICAL RELEVANCE A predictable appositional bone formation in simultaneously augmented sites using BCP is linked to an uneventful healing process.
Collapse
|
14
|
Stähli A, Bosshardt D, Sculean A, Gruber R. Emdogain-regulated gene expression in palatal fibroblasts requires TGF-βRI kinase signaling. PLoS One 2014; 9:e105672. [PMID: 25197981 PMCID: PMC4157743 DOI: 10.1371/journal.pone.0105672] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/25/2014] [Indexed: 12/11/2022] Open
Abstract
Genome-wide microarrays have suggested that Emdogain regulates TGF-β target genes in gingival and palatal fibroblasts. However, definitive support for this contention and the extent to which TGF-β signaling contributes to the effects of Emdogain has remained elusive. We therefore studied the role of the TGF-β receptor I (TGF-βRI) kinase to mediate the effect of Emdogain on palatal fibroblasts. Palatal fibroblasts were exposed to Emdogain with and without the inhibitor for TGF-βRI kinase, SB431542. Emdogain caused 39 coding genes to be differentially expressed in palatal fibroblasts by microarray analysis (p<0.05; >10-fold). Importantly, in the presence of the TGF-βRI kinase inhibitor SB431542, Emdogain failed to cause any significant changes in gene expression. Consistent with this mechanism, three independent TGF-βRI kinase inhibitors and a TGF-β neutralizing antibody abrogated the increased expression of IL-11, a selected Emdogain target gene. The MAPK inhibitors SB203580 and U0126 lowered the impact of Emdogain on IL-11 expression. The data support that TGF-βRI kinase activity is necessary to mediate the effects of Emdogain on gene expression in vitro.
Collapse
Affiliation(s)
- Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Dieter Bosshardt
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Reinhard Gruber
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Groeneveldt LC, Knuth C, Witte-Bouma J, O'Brien FJ, Wolvius EB, Farrell E. Enamel Matrix Derivative has No Effect on the Chondrogenic Differentiation of Mesenchymal Stem Cells. Front Bioeng Biotechnol 2014; 2:29. [PMID: 25229057 PMCID: PMC4151337 DOI: 10.3389/fbioe.2014.00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/07/2014] [Indexed: 01/25/2023] Open
Abstract
Background: Treatment of large bone defects due to trauma, tumor resection, or congenital abnormalities is challenging. Bone tissue engineering using mesenchymal stem cells (MSCs) represents a promising treatment option. However, the quantity and quality of engineered bone tissue are not sufficient to fill large bone defects. The aim of this study was to determine if the addition of enamel matrix derivative (EMD) improves in vitro chondrogenic priming of MSCs to ultimately improve in vivo MSC mediated endochondral bone formation. Methods: MSCs were chondrogenically differentiated in 2.0 × 105 cell pellets in medium supplemented with TGFβ3 in the absence or presence of 1, 10, or 100 μg/mL EMD. Samples were analyzed for gene expression of RUNX2, Col II, Col X, and Sox9. Protein and glycoaminoglycan (GAG) production were also investigated via DMB assays, histology, and immunohistochemistry. Osteogenic and adipogenic differentiation capacity were also assessed. Results: The addition of EMD did not negatively affect chondrogenic differentiation of adult human MSCs. EMD did not appear to alter GAG production or expression of chondrogenic genes. Osteogenic and adipogenic differentiation were also unaffected though a trend toward decreased adipogenic gene expression was observed. Conclusion: EMD does not affect chondrogenic differentiation of adult human MSCs. As such the use of EMD in combination with chondrogenically primed MSCs for periodontal bone tissue repair is unlikely to have negative effects on MSC differentiation.
Collapse
Affiliation(s)
- Lisanne C Groeneveldt
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Center , Rotterdam , Netherlands
| | - Callie Knuth
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Center , Rotterdam , Netherlands
| | - Janneke Witte-Bouma
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Center , Rotterdam , Netherlands
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland , Dublin , Ireland
| | - Eppo B Wolvius
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Center , Rotterdam , Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Center , Rotterdam , Netherlands
| |
Collapse
|
16
|
Requicha JF, Moura T, Leonor IB, Martins T, Muñoz F, Reis RL, Gomes ME, Viegas CA. Evaluation of a starch-based double layer scaffold for bone regeneration in a rat model. J Orthop Res 2014; 32:904-9. [PMID: 24604772 DOI: 10.1002/jor.22609] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 02/13/2014] [Indexed: 02/04/2023]
Abstract
Damages in the maxillofacial bones are frequent in humans following trauma, metabolic diseases, neoplasia, or inflammatory processes. Many of the available treatments to regenerate bone are often ineffective. The goal of this work was to assess the in vivo behavior of an innovative double-layered scaffold based on a blend of starch and polycaprolactone (SPCL) that comprises a membrane obtained by solvent casting, which aims to act as a guided tissue regeneration membrane, and a wet-spun fiber mesh (in some cases functionalized with osteoconductive silanol groups) targeting bone regeneration. The behavior of the double layer scaffold, functionalized with silanol groups (SPCL-Si) or without (SPCL), was assessed in a mandibular rodent model and compared to a commercial collagen membrane (positive control) and to empty defects (negative control). After 8 weeks of implantation, the micro-computed tomography and the histomorphometric analysis revealed that the SPCL-Si scaffolds induced significantly higher new bone formation compared to the collagen membrane and to the empty defects, although they had a similar performance when compared to the SPCL scaffolds.
Collapse
Affiliation(s)
- Joao F Requicha
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, P.O. Box 1013, 5001-801, Vila Real, Portugal; 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, 4806-909, Caldas das Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gruber R, Stähli A, Miron RJ, Bosshardt DD, Sculean A. Common target genes of palatal and gingival fibroblasts for EMD: the microarray approach. J Periodontal Res 2014; 50:103-12. [PMID: 24824040 DOI: 10.1111/jre.12186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Connective tissue grafts are frequently applied, together with Emdogain(®) , for root coverage. However, it is unknown whether fibroblasts from the gingiva and from the palate respond similarly to Emdogain. The aim of this study was therefore to evaluate the effect of Emdogain(®) on fibroblasts from palatal and gingival connective tissue using a genome-wide microarray approach. MATERIAL AND METHODS Human palatal and gingival fibroblasts were exposed to Emdogain(®) and RNA was subjected to microarray analysis followed by gene ontology screening with Database for Annotation, Visualization and Integrated Discovery functional annotation clustering, Kyoto Encyclopedia of Genes and Genomes pathway analysis and the Search Tool for the Retrieval of Interacting Genes/Proteins functional protein association network. Microarray results were confirmed by quantitative RT-PCR analysis. RESULTS The transcription levels of 106 genes were up-/down-regulated by at least five-fold in both gingival and palatal fibroblasts upon exposure to Emdogain(®) . Gene ontology screening assigned the respective genes into 118 biological processes, six cellular components, eight molecular functions and five pathways. Among the striking patterns observed were the changing expression of ligands targeting the transforming growth factor-beta and gp130 receptor family as well as the transition of mesenchymal epithelial cells. Moreover, Emdogain(®) caused changes in expression of receptors for chemokines, lipids and hormones, and for transcription factors such as SMAD3, peroxisome proliferator-activated receptor gamma and those of the ETS family. CONCLUSION The present data suggest that Emdogain(®) causes substantial alterations in gene expression, with similar patterns observed in palatal and gingival fibroblasts.
Collapse
Affiliation(s)
- R Gruber
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Requicha JF, Viegas CA, Muñoz F, Reis RL, Gomes ME. Periodontal tissue engineering strategies based on nonoral stem cells. Anat Rec (Hoboken) 2013; 297:6-15. [PMID: 24293355 DOI: 10.1002/ar.22797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 01/09/2023]
Abstract
Periodontal disease is an inflammatory disease which constitutes an important health problem in humans due to its enormous prevalence and life threatening implications on systemic health. Routine standard periodontal treatments include gingival flaps, root planning, application of growth/differentiation factors or filler materials and guided tissue regeneration. However, these treatments have come short on achieving regeneration ad integrum of the periodontium, mainly due to the presence of tissues from different embryonic origins and their complex interactions along the regenerative process. Tissue engineering (TE) aims to regenerate damaged tissue by providing the repair site with a suitable scaffold seeded with sufficient undifferentiated cells and, thus, constitutes a valuable alternative to current therapies for the treatment of periodontal defects. Stem cells from oral and dental origin are known to have potential to regenerate these tissues. Nevertheless, harvesting cells from these sites implies a significant local tissue morbidity and low cell yield, as compared to other anatomical sources of adult multipotent stem cells. This manuscript reviews studies describing the use of non-oral stem cells in tissue engineering strategies, highlighting the importance and potential of these alternative stem cells sources in the development of advanced therapies for periodontal regeneration.
Collapse
Affiliation(s)
- João Filipe Requicha
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Guimarães, Portugal; Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | | | | | | | | |
Collapse
|
19
|
Effect of Emdogain enamel matrix derivative and BMP-2 on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. J Craniomaxillofac Surg 2013; 42:568-76. [PMID: 24080138 DOI: 10.1016/j.jcms.2013.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/05/2013] [Accepted: 07/31/2013] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to evaluate the effect of Emdogain (Enamel Matrix Derivative, EMD) and Bone Morphogenetic Protein-2 (BMP-2), either solely or in combination, on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. Stem/progenitor cells were isolated from human alveolar bone proper, magnetically sorted using STRO-1 antibodies, characterized flowcytometrically for their surface markers' expression, and examined for colony formation and multilineage differentiation potential. Subsequently, cells were treated over three weeks with 100 μg/ml Emdogain (EMD-Group), or 100 ng/ml BMP-2 (BMP-Group), or a combination of 100 ng/ml BMP-2 and 100 μg/ml Emdogain (BMP/EMD-Group). Unstimulated stem/progenitor cells (MACS(+)-Group) and osteoblasts (OB-Group) served as controls. Osteogenic gene expression was analyzed using RTq-PCR after 1, 2 and 3 weeks (N = 3/group). Mineralized nodule formation was evaluated by Alizarin-Red staining. BMP and EMD up-regulated the osteogenic gene expression. The BMP Group showed significantly higher expression of Collagen-I, III, and V, Alkaline phosphatase and Osteonectin compared to MACS(+)- and OB-Group (p < 0.05; Two-way ANOVA/Bonferroni) with no mineralized nodule formation. Under in-vitro conditions, Emdogain and BMP-2 up-regulate the osteogenic gene expression of stem/progenitor cells. The combination of BMP-2 and Emdogain showed no additive effect and would not be recommended for a combined clinical stimulation.
Collapse
|
20
|
Gruber R, Bosshardt DD, Miron RJ, Gemperli AC, Buser D, Sculean A. Enamel matrix derivative inhibits adipocyte differentiation of 3T3-L1 cells via activation of TGF-βRI kinase activity. PLoS One 2013; 8:e71046. [PMID: 23951076 PMCID: PMC3741362 DOI: 10.1371/journal.pone.0071046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/27/2013] [Indexed: 02/08/2023] Open
Abstract
Enamel matrix derivative (EMD), an extract of fetal porcine enamel, and TGF-β can both suppress adipogenic differentiation. However, there have been no studies that functionally link the role of EMD and TGF-β in vitro. Herein, we examined whether TGF-β signaling contributes to EMD-induced suppression of adipogenic differentiation. Adipogenesis was studied with 3T3-L1 preadipocytes in the presence of SB431542, an inhibitor of TGF-βRI kinase activity. SB431542 reversed the inhibitory effect of EMD on adipogenic differentiation, based on Oil Red O staining and mRNA expression of lipid regulated genes. SB431542 also reduced EMD-stimulated expression of connective tissue growth factor (CTGF), an autocrine inhibitor of adipogenic differentiation. Moreover, short interfering (si)RNAs for CTGF partially reversed the EMD-induced suppression of lipid regulated genes. We conclude that the TGF-βRI - CTGF axis is involved in the anti-adipogenic effects of EMD in vitro.
Collapse
Affiliation(s)
- Reinhard Gruber
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
21
|
Effects of enamel matrix proteins in combination with a bovine-derived natural bone mineral for the repair of bone defects. Clin Oral Investig 2013; 18:471-8. [PMID: 23652357 DOI: 10.1007/s00784-013-0992-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/23/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Previously, the use of enamel matrix derivative (EMD) in combination with a natural bone mineral (NBM) was able to stimulate periodontal ligament cell and osteoblast proliferation and differentiation. Despite widespread use of EMD for periodontal applications, the effects of EMD on bone regeneration are not well understood. The aim of the present study was to test the ability of EMD on bone regeneration in a rat femur defect model in combination with NBM. MATERIALS AND METHODS Twenty-seven rats were treated with either NBM or NBM + EMD and assigned to histological analysis at 2, 4, and 8 weeks. Defect morphology and mineralized bone were assessed by μCT. For descriptive histology, hematoxylin and eosin staining and Safranin O staining were performed. RESULTS Significantly more newly formed trabecular bone was observed at 4 weeks around the NBM particles precoated with EMD when compared with NBM particles alone. The drilled control group, in contrast, achieved minimal bone regeneration at all three time points (P < 0.05). CONCLUSIONS The present results may suggest that EMD has the ability to enhance the speed of new bone formation when combined with NBM particles in rat osseous defects. CLINICAL RELEVANCE These findings may provide additional clinical support for the combination of EMD with bone graft for the repair of osseous and periodontal intrabony defects.
Collapse
|
22
|
Tour G, Wendel M, Tcacencu I. Human fibroblast-derived extracellular matrix constructs for bone tissue engineering applications. J Biomed Mater Res A 2013; 101:2826-37. [DOI: 10.1002/jbm.a.34600] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/08/2013] [Accepted: 01/14/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Gregory Tour
- Department of Dental Medicine; Karolinska Institutet; 14104 Huddinge; Sweden
| | - Mikael Wendel
- Department of Dental Medicine; Karolinska Institutet; 14104 Huddinge; Sweden
| | - Ion Tcacencu
- Department of Dental Medicine; Karolinska Institutet; 14104 Huddinge; Sweden
| |
Collapse
|
23
|
Gene array of primary human osteoblasts exposed to enamel matrix derivative in combination with a natural bone mineral. Clin Oral Investig 2012; 17:405-10. [PMID: 22552595 DOI: 10.1007/s00784-012-0742-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/16/2012] [Indexed: 01/06/2023]
Abstract
OBJECTIVES The application of an enamel matrix derivative (EMD) for regenerative periodontal surgery has been shown to promote formation of new cementum, periodontal ligament, and alveolar bone. In intrabony defects with a complicated anatomy, the combination of EMD with various bone grafting materials has resulted in additional clinical improvements, but the initial cellular response of osteoblasts coming in contact with these particles have not yet been fully elucidated. The objective of the present study was to evaluate the in vitro effects of EMD combined with a natural bone mineral (NBM) on a wide variety of genes, cytokines, and transcription factors and extracellular matrix proteins on primary human osteoblasts. MATERIAL AND METHODS Primary human osteoblasts were seeded on NBM particles pre-coated with versus without EMD and analyzed for gene differences using a human osteogenesis gene super-array (Applied Biosystems). Osteoblast-related genes include those transcribed during bone mineralization, ossification, bone metabolism, cell growth and differentiation, as well as gene products representing extracellular matrix molecules, transcription factors, and cell adhesion molecules. RESULTS EMD promoted gene expression of various osteoblast differentiation markers including a number of collagen types and isoforms, SMAD intracellular proteins, osteopontin, cadherin, alkaline phosphatase, and bone sialoprotein. EMD also upregulated a variety of growth factors including bone morphogenetic proteins, vascular endothelial growth factors, insulin-like growth factor, transforming growth factor, and their associated receptor proteins. CONCLUSION The results from the present study demonstrate that EMD is capable of activating a wide variety of genes, growth factors, and cytokines when pre-coated onto NBM particles. CLINICAL RELEVANCE The described in vitro effects of EMD on human primary osteoblasts provide further biologic support for the clinical application of a combination of EMD with NBM particles in periodontal and oral regenerative surgery.
Collapse
|
24
|
Chan RC, Marino V, Bartold PM. The effect of Emdogain and platelet-derived growth factor on the osteoinductive potential of hydroxyapatite tricalcium phosphate. Clin Oral Investig 2011; 16:1217-27. [PMID: 22033661 DOI: 10.1007/s00784-011-0629-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/05/2011] [Indexed: 11/27/2022]
Abstract
The aim of this study was to determine whether hydroxyapatite β-tricalcium phosphate (HA-TCP) either alone or coated with Emdogain (EMD) or recombinant human platelet-derived growth factor-BB (rhPDGF-BB) becomes osteoinductive in the murine thigh muscle model for osteoinduction. Twenty CD1 adult male mice had gelatin capsules implanted into the thigh muscle of both hind limbs. The capsules were either empty or contained one of the following: uncoated particulate HA-TCP, EMD-coated HA-TCP or rhPDGF-BB-coated HA-TCP. The implant sites were assessed histologically at 4 and 8 weeks. A semi-quantitative histological examination was performed to assess the inflammatory changes, reparative processes and osteoinduction within the graft site. At both 4 and 8 weeks, histological analysis failed to demonstrate any osteoinductive activity in any of the specimens from the experimental groups. A minimal chronic inflammatory response and foreign body reaction around the implanted materials was seen which reduced over time. The HA-TCP particles were embedded within fibrous connective tissue and were encapsulated by a dense cellular layer consisting of active fibroblasts and occasional macrophages with the thickness of this layer decreasing over time. The results of this study suggest that the use of commercially available HA-TCP alone or in combination with EMD or rhPDGF-BB is biocompatible but not osteoinductive in the murine thigh muscle model of osteoinduction. Coating HA-TCP with EMD or rhPDGF-BB does not enhance its osteoinductive potential.
Collapse
Affiliation(s)
- R C Chan
- Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide, Frome Road, Adelaide, South Australia 5005, Australia
| | | | | |
Collapse
|