1
|
Elmarsafy SM. A Comprehensive Narrative Review of Nanomaterial Applications in Restorative Dentistry: Demineralization Inhibition and Remineralization Applications (Part I). Cureus 2024; 16:e58544. [PMID: 38644945 PMCID: PMC11027030 DOI: 10.7759/cureus.58544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
Nanotechnology is extensively employed in various aspects of dentistry, including restorative dentistry, because of its substantial improvement and promising potential in the clinical efficacy of restorative materials and procedures. The main purpose of this review is to explore the different uses of nanomaterials in restorative dentistry. The review is divided into two parts: the current review (Part 1) focuses on the prevention of demineralization and promotion of remineralization, while the upcoming review (Part 2) will discuss the reinforcement of restorative materials and their therapeutic applications. Nanofillers are added to dental materials to boost their antibacterial, anticaries, and demineralization inhibitory capabilities. Additionally, they improve remineralization and enhance both mechanical properties and therapeutic features. The nanoparticles (NPs) used to increase antibacterial and remineralization inhibitions can be classified into two main groups: inorganic and organic NPs. Examples of inorganic NPs include silver, zinc oxide, titanium oxide, and gold. Examples of organic NPs include silica, quaternary ammonium salt monomers, and chitosan NPs. Furthermore, the nanofillers utilized to enhance the process of remineralization include various types such as metals, nano-hydroxyapatite, nano-amorphous calcium phosphate (ACP), dicalcium phosphate NPs, casein phosphopeptide-ACP (CPP-ACP), and calcium fluoride NPs. These uses underscore the potential applications of NPs in restorative dentistry, although there are still some limitations to address.
Collapse
Affiliation(s)
- Sahar M Elmarsafy
- Department of Restorative Dentistry, Faculty of Dental Medicine, Umm Al-Qura University, Makkah, SAU
- Department of Conservative Dentistry, Faculty of Dental Medicine for Girls, Al-Azhar University, Cario, EGY
| |
Collapse
|
2
|
Xu VW, Nizami MZI, Yin IX, Niu JY, Yu OY, Chu CH. Copper Materials for Caries Management: A Scoping Review. J Funct Biomater 2023; 15:10. [PMID: 38248677 PMCID: PMC10817259 DOI: 10.3390/jfb15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
This study comprehensively reviewed the types, properties and potential applications of copper materials for caries management. Two researchers independently searched English publications using PubMed, Scopus and Web of Science. They screened the titles and abstracts of publications presenting original studies for review. They included 34 publications on copper materials, which were categorized as copper and copper alloy materials (13/34, 38%), copper salt materials (13/34, 38%) and copper oxide materials (8/34, 24%). All reported copper materials inhibited the growth of cariogenic bacteria such as Streptococcus mutans and Candida albicans. The materials could be doped into topical agents, restorative fillers, dental adhesives, drinking water, dental implants, orthodontic appliances, mouthwash and sugar. Most publications (29/34, 83%) were laboratory studies, five (5/34, 14%) were animal studies and only one paper (1/34, 3%) was clinical research. In conclusion, copper and copper alloy materials, copper salt materials and copper oxide materials have an antimicrobial property that inhibits cariogenic bacteria and Candida albicans. These copper materials may be incorporated into dental materials and even drinking water and sugar for caries prevention. Most publications are laboratory studies. Further clinical studies are essential to validate the effectiveness of copper materials in caries prevention.
Collapse
Affiliation(s)
- Veena Wenqing Xu
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China; (V.W.X.); (M.Z.I.N.); (I.X.Y.); (J.Y.N.); (O.Y.Y.)
| | - Mohammed Zahedul Islam Nizami
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China; (V.W.X.); (M.Z.I.N.); (I.X.Y.); (J.Y.N.); (O.Y.Y.)
- Department of Mineralized Tissue Biology and Bioengineering, The Forsyth Institute, Harvard University, Cambridge, MA 02138, USA
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China; (V.W.X.); (M.Z.I.N.); (I.X.Y.); (J.Y.N.); (O.Y.Y.)
| | - John Yun Niu
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China; (V.W.X.); (M.Z.I.N.); (I.X.Y.); (J.Y.N.); (O.Y.Y.)
| | - Ollie Yiru Yu
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China; (V.W.X.); (M.Z.I.N.); (I.X.Y.); (J.Y.N.); (O.Y.Y.)
| | - Chun-Hung Chu
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China; (V.W.X.); (M.Z.I.N.); (I.X.Y.); (J.Y.N.); (O.Y.Y.)
| |
Collapse
|
3
|
Ramos-Zúñiga J, Bruna N, Pérez-Donoso JM. Toxicity Mechanisms of Copper Nanoparticles and Copper Surfaces on Bacterial Cells and Viruses. Int J Mol Sci 2023; 24:10503. [PMID: 37445681 DOI: 10.3390/ijms241310503] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Copper is a metal historically used to prevent infections. One of the most relevant challenges in modern society are infectious disease outbreaks, where copper-based technologies can play a significant role. Currently, copper nanoparticles and surfaces are the most common antimicrobial copper-based technologies. Despite the widespread use of copper on nanoparticles and surfaces, the toxicity mechanism(s) explaining their unique antimicrobial properties are not entirely known. In general, toxicity effects described in bacteria and fungi involve the rupture of membranes, accumulation of ions inside the cell, protein inactivation, and DNA damage. A few studies have associated Cu-toxicity with ROS production and genetic material degradation in viruses. Therefore, understanding the mechanisms of the toxicity of copper nanoparticles and surfaces will contribute to developing and implementing efficient antimicrobial technologies to combat old and new infectious agents that can lead to disease outbreaks such as COVID-19. This review summarizes the current knowledge regarding the microbial toxicity of copper nanoparticles and surfaces and the gaps in this knowledge. In addition, we discuss potential applications derived from discovering new elements of copper toxicity, such as using different molecules or modifications to potentiate toxicity or antimicrobial specificity.
Collapse
Affiliation(s)
- Javiera Ramos-Zúñiga
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Nicolás Bruna
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - José M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| |
Collapse
|
4
|
Zhou W, Chen H, Weir MD, Oates TW, Zhou X, Wang S, Cheng L, Xu HH. Novel bioactive dental restorations to inhibit secondary caries in enamel and dentin under oral biofilms. J Dent 2023; 133:104497. [PMID: 37011782 DOI: 10.1016/j.jdent.2023.104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVE To provide the first review on cutting-edge research on the development of new bioactive restorations to inhibit secondary caries in enamel and dentin under biofilms. State-of-the-art bioactive and therapeutic materials design, structure-property relationships, performance and efficacies in oral biofilm models. DATA, SOURCES AND STUDY SELECTION Researches on development and assessment new secondary caries inhibition restorations via in vitro and in vivo biofilm-based secondary caries models were included. The search of articles was carried out in Web of Science, PubMed, Medline and Scopus. CONCLUSIONS Based on the found articles, novel bioactive materials are divided into different categories according to their remineralization and antibacterial biofunctions. In vitro and in vivo biofilm-based secondary caries models are effective way of evaluating the materials efficacies. However, new intelligent and pH-responsive materials were still urgent need. And the materials evaluation should be performed via more clinical relevant biofilm-based secondary caries models. CLINICAL SIGNIFICANCE Secondary caries is a primary reason for dental restoration failures. Biofilms produce acids, causing demineralization and secondary caries. To inhibit dental caries and improve the health and quality of life for millions of people, it is necessary to summarize the present state of technologies and new advances in dental biomaterials for preventing secondary caries and protecting tooth structures against oral biofilm attacks. In addition, suggestions for future studies are provided.
Collapse
|
5
|
Ameh T, Zarzosa K, Dickinson J, Braswell WE, Sayes CM. Nanoparticle surface stabilizing agents influence antibacterial action. Front Microbiol 2023; 14:1119550. [PMID: 36846763 PMCID: PMC9947285 DOI: 10.3389/fmicb.2023.1119550] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
The antibacterial properties of nanoparticles are of particular interest because of their potential to serve as an alternative therapy to combat antimicrobial resistance. Metal nanoparticles such as silver and copper nanoparticles have been investigated for their antibacterial properties. Silver and copper nanoparticles were synthesized with the surface stabilizing agents cetyltrimethylammonium bromide (CTAB, to confer a positive surface charge) and polyvinyl pyrrolidone (PVP, to confer a neutral surface charge). Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and viable plate count assays were used to determine effective doses of silver and copper nanoparticles treatment against Escherichia coli, Staphylococcus aureus and Sphingobacterium multivorum. Results show that CTAB stabilized silver and copper nanoparticles were more effective antibacterial agents than PVP stabilized metal nanoparticles, with MIC values in a range of 0.003 μM to 0.25 μM for CTAB stabilized metal nanoparticles and 0.25 μM to 2 μM for PVP stabilized metal nanoparticles. The recorded MIC and MBC values of the surface stabilized metal nanoparticles show that they can serve as effective antibacterial agents at low doses.
Collapse
Affiliation(s)
- Thelma Ameh
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Kusy Zarzosa
- Department of Environmental Science, Baylor University, Waco, TX, United States,United States Department of Agriculture, Animal and Plant Health Inspection Services, Plant Protection and Quarantine, Science and Technology, Insect Management and Molecular Diagnostics Laboratory, Edinburg, TX, United States
| | - Jake Dickinson
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - W. Evan Braswell
- United States Department of Agriculture, Animal and Plant Health Inspection Services, Plant Protection and Quarantine, Science and Technology, Insect Management and Molecular Diagnostics Laboratory, Edinburg, TX, United States
| | - Christie M. Sayes
- Department of Environmental Science, Baylor University, Waco, TX, United States,*Correspondence: Christie M. Sayes, ✉
| |
Collapse
|
6
|
Muacevic A, Adler JR, Reche A. Application of Nanomaterials in Restorative Dentistry. Cureus 2023; 15:e33779. [PMID: 36819367 PMCID: PMC9931385 DOI: 10.7759/cureus.33779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/14/2023] [Indexed: 01/16/2023] Open
Abstract
Dental composite resins are widely popular restoratives, as, when using these tools to restore the tooth, only the infected and affected carious structures are removed. This allows the patient to retain a greater quantity of their natural tooth structure than they would have using conventional principles of cavity preparation. Nanomaterials are a new concept concerning the manipulation of materials on an atomic or molecular level. However, on a nanoscale, the chemical, biological, and physical properties of an atom vary compared to the properties of its naturally occurring compound form. The main idea of shifting focus to the inclusion of nanomaterials is to aid in the detection, treatment, and prevention of the recurrence of a pathology (secondary caries). The primary aim of using nanomaterials in composites is to augment their strength, wear resistance, and microhardness. This usage also reduces polymerization shrinkage. Nanomaterials are capable of enhancing mechanical properties, life, and bond strength between dentin and restoration. This review aims to highlight different research studies and experiments that have been conducted on the use of nanomaterials in restorative dentistry in order to understand the versatility of these materials and their viability in practice.
Collapse
|
7
|
Pourhajibagher M, Bahador A. Effects of incorporation of nanoparticles into dental acrylic resins on antimicrobial and physico-mechanical properties: A meta-analysis of in vitro studies. J Oral Biol Craniofac Res 2022; 12:557-568. [PMID: 35898925 DOI: 10.1016/j.jobcr.2022.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 07/16/2022] [Indexed: 10/17/2022] Open
Abstract
Background A meta-analysis study was conducted to determine whether the incorporation of nanoparticles into the dental acrylic resins influence the physico-mechanical properties and whether there are the appropriate nanoparticles exhibiting excellent antimicrobial activity against cariogenic bacteria along with acceptable physico-mechanical properties. Methods We systematically searched the various databases up to December 2021. The review was performed based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Consolidated Standards of Reporting Trials (CONSORT) guidelines. A meta-analysis of physico-mechanical properties was performed by a random-effects model at a 95% confidence interval and the antimicrobial effects were analyzed descriptively. Results 27 studies were included for the final analysis. There was no statistically significant difference in flexural strength (0.553, [95% confidence interval (CI) 0.501-0.604]), microhardness (0.509, [95% CI 0.278-0.736]), surface roughness (0.753, [95% CI 0.315-0.953]), impact strength (0.90, [95% CI 0.188-0.997]), and elastic modulus (0.848, [95% CI 0.514-0.967]), with nanoparticles addition compared with the control group. Forest plots were not generated for the thermal conductivity, tensile strength, and translucency because of the lack of comparison. Although the articles showed high heterogeneity without the high risk of bias, the finding showed the nanoparticles at low concentrations into dental acrylic resins could improve the antimicrobial activities without adverse effects on their physico-mechanical properties. Conclusion Adding the low concentration of nanoparticles such as 0.5% Ag, ≤0.25% TiO2, and ≤0.25% SiO2 as the most abundant antimicrobial nanoparticles do not influence their physico-mechanical properties and can be effective in the elimination of cariogenic pathogens.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, Tehran University of Medical Sciences, Tehran, Iran.,Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran
| |
Collapse
|
8
|
Ma X, Zhou S, Xu X, Du Q. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. Front Surg 2022; 9:905892. [PMID: 35990090 PMCID: PMC9388913 DOI: 10.3389/fsurg.2022.905892] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Copper has been used as an antimicrobial agent long time ago. Nowadays, copper-containing nanoparticles (NPs) with antimicrobial properties have been widely used in all aspects of our daily life. Copper-containing NPs may also be incorporated or coated on the surface of dental materials to inhibit oral pathogenic microorganisms. This review aims to detail copper-containing NPs' antimicrobial mechanism, cytotoxic effect and their application in dentistry.
Collapse
Affiliation(s)
- Xinru Ma
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Stomatology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (West China Hospital Sichuan University Tibet Chengdu Branch Hospital), Chengdu, China
| | - Shiyu Zhou
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoling Xu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qin Du
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
The Potential Application of Green-Synthesized Metal Nanoparticles in Dentistry: A Comprehensive Review. Bioinorg Chem Appl 2022; 2022:2311910. [PMID: 35281331 PMCID: PMC8913069 DOI: 10.1155/2022/2311910] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/06/2022] [Accepted: 02/07/2022] [Indexed: 12/26/2022] Open
Abstract
Orodental problems have long been managed using herbal medicine. The development of nanoparticle formulations with herbal medicine has now become a breakthrough in dentistry because the synthesis of biogenic metal nanoparticles (MNPs) using plant extracts can address the drawbacks of herbal treatments. Green production of MNPs such as Ag, Au, and Fe nanoparticles enhanced by plant extracts has been proven to be beneficial in managing numerous orodental disorders, even outperforming traditional materials. Nanostructures are utilized in dental advances and diagnostics. Oral disease prevention medicines, prostheses, and tooth implantation all employ nanoparticles. Nanomaterials can also deliver oral fluid or pharmaceuticals, treating oral cancers and providing a high level of oral healthcare. These are also found in toothpaste, mouthwash, and other dental care products. However, there is a lack of understanding about the safety of nanomaterials, necessitating additional study. Many problems, including medication resistance, might be addressed using nanoparticles produced by green synthesis. This study reviews the green synthesis of MNPs applied in dentistry in recent studies (2010–2021).
Collapse
|
10
|
Xu VW, Nizami MZI, Yin IX, Yu OY, Lung CYK, Chu CH. Application of Copper Nanoparticles in Dentistry. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:805. [PMID: 35269293 PMCID: PMC8912653 DOI: 10.3390/nano12050805] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
Nanoparticles based on metal and metallic oxides have become a novel trend for dental applications. Metal nanoparticles are commonly used in dentistry for their exclusive shape-dependent properties, including their variable nano-sizes and forms, unique distribution, and large surface-area-to-volume ratio. These properties enhance the bio-physio-chemical functionalization, antimicrobial activity, and biocompatibility of the nanoparticles. Copper is an earth-abundant inexpensive metal, and its nanoparticle synthesis is cost effective. Copper nanoparticles readily intermix and bind with other metals, ceramics, and polymers, and they exhibit physiochemical stability in the compounds. Hence, copper nanoparticles are among the commonly used metal nanoparticles in dentistry. Copper nanoparticles have been used to enhance the physical and chemical properties of various dental materials, such as dental amalgam, restorative cements, adhesives, resins, endodontic-irrigation solutions, obturation materials, dental implants, and orthodontic archwires and brackets. The objective of this review is to provide an overview of copper nanoparticles and their applications in dentistry.
Collapse
Affiliation(s)
| | - Mohammed Zahedul Islam Nizami
- Faculty of Dentistry, University of Hong Kong, Hong Kong 999077, China; (V.W.X.); (I.X.Y.); (O.Y.Y.); (C.Y.K.L.); (C.H.C.)
| | | | | | | | | |
Collapse
|
11
|
Antimicrobial antidegradative dental adhesive preserves restoration-tooth bond. Dent Mater 2020; 36:1666-1679. [PMID: 33183773 DOI: 10.1016/j.dental.2020.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Assess the ability of an antimicrobial drug-releasing resin adhesive, containing octenidine dihydrochloride (OCT)-silica co-assembled particles (DSPs), to enhance the biostability and preserve the interfacial fracture toughness (FT) of composite restorations bonded to dentin. Enzyme-catalyzed degradation compromises the dental restoration-tooth interface, increasing cariogenic bacterial infiltration. In addition to bacterial ingress inhibition, antimicrobial-releasing adhesives may exhibit direct interfacial biodegradation inhibition as an additional benefit. METHODS Mini short-rod restoration bonding specimens with total-etch adhesive with/without 10% wt. DSPs were made. Interfacial fracture toughness (FT) was measured as-manufactured or post-incubation in simulated human salivary esterase (SHSE) for up to 6-months. Effect of OCT on SHSE and whole saliva/bacterial enzyme activity was assessed. Release of OCT outside the restoration interface was assessed. RESULTS No deleterious effect of DSPs on initial bonding capacity was observed. Aging specimens in SHSE reduced FT of control but not DSP-adhesive-bonded specimens. OCT inhibited SHSE degradation of adhesive monomer and may inhibit endogenous proteases. OCT inhibited bacterial esterase and collagenase. No endogenous collagen breakdown was detected in the present study. OCT increased human saliva degradative esterase activity below its minimum inhibitory concentration towards S. mutans (MIC), but inhibited degradation above MIC. OCT release outside restoration margins was below detection. SIGNIFICANCE DSP-adhesive preserves the restoration bond through a secondary enzyme-inhibitory effect of released OCT, which is virtually confined to the restoration interface microgap. Enzyme activity modulation may produce a positive-to-negative feedback switch, by increasing OCT concentration via biodegradation-triggered release to an effective dose, then subsequently slowing degradation and degradation-triggered release.
Collapse
|
12
|
Ferrando-Magraner E, Bellot-Arcís C, Paredes-Gallardo V, Almerich-Silla JM, García-Sanz V, Fernández-Alonso M, Montiel-Company JM. Antibacterial Properties of Nanoparticles in Dental Restorative Materials. A Systematic Review and Meta-Analysis. ACTA ACUST UNITED AC 2020; 56:medicina56020055. [PMID: 32013103 PMCID: PMC7073742 DOI: 10.3390/medicina56020055] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Nanotechnology has become a significant area of research focused mainly on increasing the antibacterial and mechanical properties of dental materials. The aim of the present systematic review and meta-analysis was to examine and quantitatively analyze the current evidence for the addition of different nanoparticles into dental restorative materials, to determine whether their incorporation increases the antibacterial/antimicrobial properties of the materials. Materials and Methods: A literature search was performed in the Pubmed, Scopus, and Embase databases, up to December 2018, following PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines for systematic reviews and meta-analyses. Results: A total of 624 papers were identified in the initial search. After screening the texts and applying inclusion criteria, only 11 of these were selected for quantitative analysis. The incorporation of nanoparticles led to a significant increase (p-value <0.01) in the antibacterial capacity of all the dental materials synthesized in comparison with control materials. Conclusions: The incorporation of nanoparticles into dental restorative materials was a favorable option; the antibacterial activity of nanoparticle-modified dental materials was significantly higher compared with the original unmodified materials, TiO2 nanoparticles providing the greatest benefits. However, the high heterogeneity among the articles reviewed points to the need for further research and the application of standardized research protocols.
Collapse
Affiliation(s)
- Elena Ferrando-Magraner
- Orthodontics Teaching Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (E.F.-M.); (C.B.-A.); (V.G.-S.)
| | - Carlos Bellot-Arcís
- Orthodontics Teaching Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (E.F.-M.); (C.B.-A.); (V.G.-S.)
| | - Vanessa Paredes-Gallardo
- Orthodontics Teaching Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (E.F.-M.); (C.B.-A.); (V.G.-S.)
- Correspondence:
| | - José Manuel Almerich-Silla
- Preventive Dentistry Teaching Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (J.M.A.-S.); (J.M.M.-C.)
| | - Verónica García-Sanz
- Orthodontics Teaching Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (E.F.-M.); (C.B.-A.); (V.G.-S.)
| | | | - José María Montiel-Company
- Preventive Dentistry Teaching Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (J.M.A.-S.); (J.M.M.-C.)
| |
Collapse
|
13
|
Makvandi P, Gu JT, Zare EN, Ashtari B, Moeini A, Tay FR, Niu LN. Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta Biomater 2020; 101:69-101. [PMID: 31542502 DOI: 10.1016/j.actbio.2019.09.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/26/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
Failure of dental treatments is mainly due to the biofilm accumulated on the dental materials. Many investigations have been conducted on the advancements of antimicrobial dental materials. Polymeric and inorganic nanoscopical agents are capable of inhibiting microorganism proliferation. Applying them as fillers in dental materials can achieve enhanced microbicidal ability. The present review provides a broad overview on the state-of-the-art research in the field of antimicrobial fillers which have been adopted for incorporation into dental materials over the last 5 years. The antibacterial agents and applications are described, with the aim of providing information for future investigations. STATEMENT OF SIGNIFICANCE: Microbial infection is the primary cause of dental treatment failure. The present review provides an overview on the state-of-art in the field of antimicrobial nanoscopical or polymeric fillers that have been applied in dental materials. Trends in the biotechnological development of these antimicrobial fillers over the last 5 years are reviewed to provide a backdrop for further advancement in this field of research.
Collapse
|
14
|
Unveiling Antimicrobial Activity of Metal Iodide (CuI, AgI, and PbI2) Nanoparticles: Towards Biomedical Surfaces Applications. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01744-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Song W, Ge S. Application of Antimicrobial Nanoparticles in Dentistry. Molecules 2019; 24:E1033. [PMID: 30875929 PMCID: PMC6470852 DOI: 10.3390/molecules24061033] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 02/04/2023] Open
Abstract
Oral cavity incessantly encounters a plethora of microorganisms. Plaque biofilm-a major cause of caries, periodontitis and other dental diseases-is a complex community of bacteria or fungi that causes infection by protecting pathogenic microorganisms from external drug agents and escaping the host defense mechanisms. Antimicrobial nanoparticles are promising because of several advantages such as ultra-small sizes, large surface-area-to-mass ratio and special physical and chemical properties. To better summarize explorations of antimicrobial nanoparticles and provide directions for future studies, we present the following critical review. The keywords "nanoparticle," "anti-infective or antibacterial or antimicrobial" and "dentistry" were retrieved from Pubmed, Scopus, Embase and Web of Science databases in the last five years. A total of 172 articles met the requirements were included and discussed in this review. The results show that superior antibacterial properties of nanoparticle biomaterials bring broad prospects in the oral field. This review presents the development, applications and underneath mechanisms of antibacterial nanoparticles in dentistry including restorative dentistry, endodontics, implantology, orthodontics, dental prostheses and periodontal field.
Collapse
Affiliation(s)
- Wenjing Song
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan 250012, China.
- Department of Periodontology, School of Stomatology, Shandong University, Jinan 250012, China.
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan 250012, China.
- Department of Periodontology, School of Stomatology, Shandong University, Jinan 250012, China.
| |
Collapse
|
16
|
ALGhanem A, Fernandes G, Visser M, Dziak R, Renné WG, Sabatini C. Biocompatibility and bond degradation of poly-acrylic acid coated copper iodide-adhesives. Dent Mater 2017; 33:e336-e347. [PMID: 28712739 DOI: 10.1016/j.dental.2017.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/13/2017] [Accepted: 06/13/2017] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To investigate the effect of poly-acrylic acid (PAA) copper iodide (CuI) adhesives on bond degradation, tensile strength, and biocompatibility. METHODS PAA-CuI particles were incorporated into Optibond XTR, Optibond Solo and XP Bond in 0.1 and 0.5mg/ml. Clearfil SE Protect, an MDPB-containing adhesive, was used as control. The adhesives were applied to human dentin, polymerized and restored with composite in 2mm-increments. Resin-dentin beams (0.9±0.1mm2) were evaluated for micro-tensile bond strength after 24h, 6 months and 1year. Hourglass specimens (10×2×1mm) were evaluated for ultimate tensile strength (UTS). Cell metabolic function of human gingival fibroblast cells exposed to adhesive discs (8×1mm) was assessed with MTT assay. Copper release from adhesive discs (5×1mm) was evaluated with UV-vis spectrophotometer after immersion in 0.9% NaCl for 1, 3, 5, 7, 10, 14, 21 and 30 days. SEM, EDX and XRF were conducted for microstructure characterization. RESULTS XTR and Solo did not show degradation when modified with PAA-CuI regardless of the concentration. The UTS for adhesives containing PAA-CuI remained unaltered relative to the controls. The percent viable cells were reduced for Solo 0.5mg/ml and XP 0.1 or 0.5mg/ml PAA-CuI. XP demonstrated the highest ion release. For all groups, the highest release was observed at days 1 and 14. SIGNIFICANCE PAA-CuI particles prevented the bond degradation of XTR and Solo after 1year without an effect on the UTS for any adhesive. Cell viability was affected for some adhesives. A similar pattern of copper release was demonstrated for all adhesives.
Collapse
Affiliation(s)
- Adi ALGhanem
- King Fahad Medical City, Makkah Al Mukarramah Branch Rd., As Sulimaniyah, Riyadh 11525, Saudi Arabia.
| | - Gabriela Fernandes
- Yashwantrao Chavan Dental College, 166/1, Vadgaon Gupta, Opp. M.I.D.C, Ahmednagar, Maharashtra 414003, India.
| | - Michelle Visser
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Rosemary Dziak
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Walter G Renné
- Department of Oral Rehabilitation and Restorative Dentistry, College of Dental Medicine, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA.
| | - Camila Sabatini
- Department of Restorative Dentistry, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA.
| |
Collapse
|
17
|
Gutiérrez MF, Malaquias P, Hass V, Matos TP, Lourenço L, Reis A, Loguercio AD, Farago PV. The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces. J Dent 2017; 61:12-20. [PMID: 28438559 DOI: 10.1016/j.jdent.2017.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To evaluate the effect of addition of copper nanoparticles at different concentrations into an etch-and-rinse adhesive (ER) on antimicrobial activity, Knoop microhardness (KHN), in vitro and in situ degree of conversion (DC), as well as the immediate (IM) and 2-year (2Y) resin-dentine bond strength (μTBS) and nanoleakage (NL). METHODS Seven experimental ER adhesives were formulated according to the amount of copper nanoparticles incorporated into the adhesives (0 [control], 0.0075 to 1wt.%). We tested the antimicrobial activity of adhesives against Streptococcus mutans using agar diffusion assay after IM and 2Y. The Knoop microhardness and in vitro DC were tested after IM and 2Y. The adhesives were applied to flat occlusal dentine surfaces after acid etching. After resin build-ups, specimens were longitudinally sectioned to obtain beam-like resin-dentine specimens (0.8mm2), which were used for evaluation of μTBS and nanoleakage at the IM and 2Y periods. In situ DC was evaluated at the IM period in these beam-like specimens. Data were submitted to appropriate statistical analyses (α=0.05). RESULTS The addition of copper nanoparticles provided antimicrobial activity to the adhesives only in the IM evaluation and slightly reduced the KHN, the in vitro and in situ DC (copper concentrations of 1wt.%). However, KHN increase for all concentrations after 2Y. After 2Y, no significant reductions of μTBS (0.06 to 1% wt.%) and increases of nanoleakage were observed for copper containing adhesives compared to the control group. CONCLUSION Copper nanoparticles addition up to 0.5wt.% may provide antimicrobial properties to ER adhesives and prevent the degradation of the adhesive interface, without reducing the mechanical properties of the formulations.
Collapse
Affiliation(s)
- Mario F Gutiérrez
- School of Dentistry, State University of Ponta Grossa, Ponta Grossa, PR, Brazil; Institute for Research of Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Pamela Malaquias
- School of Dentistry, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Viviane Hass
- Undergraduate and Post-Graduate Department, University CEUMA, São Luís, MA, Brazil; Post-Graduate Department, State University of West Paraná, Cascavel, PR, Brazil
| | - Thalita P Matos
- School of Dentistry, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Lucas Lourenço
- School of Dentistry, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Alessandra Reis
- Department of Restorative Dentistry, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Alessandro D Loguercio
- Department of Restorative Dentistry, State University of Ponta Grossa, Ponta Grossa, PR, Brazil.
| | - Paulo Vitor Farago
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| |
Collapse
|