1
|
Błochowiak K, Celichowski P, Kempisty B, Iwanik K, Nowicki M. Transcriptomic Profile of Genes Encoding Proteins Involved in Pathogenesis of Sjögren's Syndrome Related Xerostomia-Molecular and Clinical Trial. J Clin Med 2020; 9:jcm9103299. [PMID: 33066537 PMCID: PMC7602267 DOI: 10.3390/jcm9103299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/01/2020] [Accepted: 10/10/2020] [Indexed: 01/14/2023] Open
Abstract
Sjögren’s syndrome (SS) is characterized by xerostomia. We aimed to investigate and compare gene expressions in the labial salivary glands of SS patients with xerostomia SS (sicca) and without xerostomia SS (non-sicca) and of healthy subjects (HS) by means of microarray analysis, and to find genes involved in xerostomia. The study group comprised 11 SS patients (3 SS (sicca) and 8 SS (non-sicca)) and 9 HS. The relative gene expression changes were validated with RT-qPCR in the larger study group. Among the differently expressed genes belonging to the “secretion” ontology group with a fold change >2 and with a p value < 0.05, the Transmembrane P24 Trafficking Protein 10 (TMED10), Protein Disulfide Isomerase Family A Member 4 (PDIA4), Calnexin (CANX), Amyloid Beta Precursor Protein (APP), and Transmembrane BAX Inhibitor Motif Containing 6 (TMBIM6) gene expressions in both SS (sicca) and SS (non-sicca) groups were lower than in HS. Significant correlations were observed between TMED10, PDIA4, and CANX gene expression in SS (sicca) patients compared to the controls. There were no differences between the SS (sicca) and SS (non-sicca) study groups in the expression of the aforementioned genes. Results indicate their role in the endoplasmic reticulum system, their overlapping function and the loss of the APP neuroprotective function in xerostomia. It has a multifactorial origin and can be triggered by disturbances to the various signaling pathways in saliva secretion.
Collapse
Affiliation(s)
- Katarzyna Błochowiak
- Department of Oral Surgery and Periodontology, Poznan University of Medical Sciences, 61-812 Poznan, Poland
- Correspondence: ; Tel.: +48-608-836-850
| | - Piotr Celichowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (P.C.); (B.K.); (M.N.)
| | - Bartosz Kempisty
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (P.C.); (B.K.); (M.N.)
- Department of Anatomy, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Katarzyna Iwanik
- Department of Clinical Pathomorphology, Poznan University of Medical Sciences, 60-355 Poznan, Poland;
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (P.C.); (B.K.); (M.N.)
| |
Collapse
|
2
|
Xiang RL, Huang Y, Zhang Y, Cong X, Zhang ZJ, Wu LL, Yu GY. Type 2 diabetes-induced hyposalivation of the submandibular gland through PINK1/Parkin-mediated mitophagy. J Cell Physiol 2019; 235:232-244. [PMID: 31190343 PMCID: PMC6851669 DOI: 10.1002/jcp.28962] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
Diabetes is often accompanied by dysfunction of salivary glands. However, the molecular mechanism remains unclear. The mechanisms that underlie diabetic hyposalivation were studied by db/db mice and SMG‐C6 cells. We found morphological changes and decreased stimulated salivary flow rates of the submandibular gland (SMG) in diabetic mice. We observed structural changes and dysfunction of mitochondria. More mitophagosomes and higher expression of autophagy‐related proteins were detected. Increased levels of proteins PINK1 and Parkin indicate that PINK1/Parkin‐mediated mitophagy was activated in diabetic SMG. Consistently, high glucose (HG) induced mitochondrial dysfunction and PINK1/Parkin‐mediated mitophagy in cultivated SMG‐C6 cells. HG also increased reactive oxygen species (ROS) and lessened activation of antioxidants in SMG‐C6 cells. In addition, HG lowered ERK1/2 phosphorylation and HG‐induced mitophagy was decreased after ERK1/2 was activated by LM22B‐10. Altogether, these data suggest that ROS played a crucial role in diabetes‐induced mitochondrial dysfunction and PINK1/Parkin‐mediated mitophagy and ERK1/2 was required in HG‐induced mitophagy in SMG.
Collapse
Affiliation(s)
- Ruo-Lan Xiang
- Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Yan Huang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Zhang
- Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Xin Cong
- Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Zhe-Jing Zhang
- Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Li-Ling Wu
- Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|