1
|
Transcriptomic Profile of Canine Mammary Ductal Carcinoma. Int J Mol Sci 2023; 24:ijms24065212. [PMID: 36982287 PMCID: PMC10049542 DOI: 10.3390/ijms24065212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
Dogs can be excellent models for spontaneous studies about breast cancers, presenting similarities in clinical behavior and molecular pathways of the disease. Thus, analyses of the canine transcriptome can identify deregulated genes and pathways, contributing to the identification of biomarkers and new therapeutic targets, benefiting humans and animals. In this context, this study aimed to determine the transcriptional profile of canine mammary ductal carcinoma and contribute to the clarification of the importance of deregulated molecules in the molecular pathways involved in the disease. Therefore, we used mammary ductal carcinoma tissue samples and non-tumor mammary tissue from the radical mastectomy of six female dogs. Sequencing was performed on the NextSeq-500 System platform. A comparison of carcinoma tissue and normal tissue revealed 633 downregulated and 573 upregulated genes, which were able to differentiate the groups by principal component analysis. Gene ontology analysis indicated that inflammatory, cell differentiation and adhesion, and extracellular matrix maintenance pathways were mainly deregulated in this series. The main differentially expressed genes observed in this research can indicate greater disease aggressiveness and worse prognosis. Finally, the study of the canine transcriptome indicates that it is an excellent model to generate information relevant to oncology in both species.
Collapse
|
2
|
Tao B, Wang D, Yang S, Liu Y, Wu H, Li Z, Chang L, Yang Z, Liu W. Cucurbitacin B Inhibits Cell Proliferation by Regulating X-Inactive Specific Transcript Expression in Tongue Cancer. Front Oncol 2021; 11:651648. [PMID: 34295808 PMCID: PMC8290325 DOI: 10.3389/fonc.2021.651648] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/18/2021] [Indexed: 01/28/2023] Open
Abstract
Cucurbitacin B (CuB), a natural product, has anti-tumor effects on various cancers. In order to investigate the expression of long non-coding RNAs (lncRNA), we carried out RNA sequencing (RNA-seq) and quantitative PCR (qPCR). The data indicated that CAL27 and SCC9 tongue squamous cell carcinoma (TSCC) cells had reduced expression of X-inactive specific transcript (XIST) after CuB treatment. Moreover, our results showed increased expression of XIST in human tongue cancer. In this study, CuB treatment inhibited proliferation, migration and invasion of SCC9 cells, and induced cellular apoptosis. Interestingly, knockdown of XIST led to inhibition of cell proliferation and induced apoptosis in vitro. In addition, reduced expression of XIST suppressed cell migration and invasion. MicroRNA 29b (miR-29b) was identified as a direct target of XIST. Previous reports indicated that miR-29b regulates p53 protein. Our results suggest that increased expression of miR-29b induces cell apoptosis through p53 protein. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system validated the role of XIST knockout in tumor development in vivo. Together, these results suggest that CuB exerts significant anti-cancer activity by regulating expression of XIST via miR-29b.
Collapse
Affiliation(s)
- Boqiang Tao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China.,Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Changchun, China
| | - Dongxu Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China.,Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Shuo Yang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yingkun Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhanjun Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Lu Chang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhijing Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
3
|
Vallina C, López-Pintor RM, González-Serrano J, de Vicente JC, Hernández G, Lorz C. Genes involved in the epithelial-mesenchymal transition in oral cancer: A systematic review. Oral Oncol 2021; 117:105310. [PMID: 33901766 DOI: 10.1016/j.oraloncology.2021.105310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Epithelial-mesenchymal transition (EMT) is considered the initial step in the invasion-metastasis cascade. The aim of this systematic review was to study the signature of genes involved in the EMT process in oral cancer (OC) confirmed by protein expression and its possible relationship with oral squamous cell carcinoma (OSCC) prognostic variables. MATERIALS AND METHODS A search of the scientific literature was carried out with no start date restriction until 17 September 2020 in the electronic databases Pubmed/MEDLINE, Web of Science, Cochrane Library and Scopus, following specific eligibility criteria. The methodological quality of the included studies was assessed using the Newcastle-Ottawa tool. RESULTS A total of 8 retrospective cohort studies were included, all of them performed in China and with low risk of bias. Overexpression of the genes HNRNPC, ITGA5, HMGA2 and SRSF3, and low expression of ALDH3A1 and ARID2 promote EMT in OC. The more advanced clinical stages of the TNM classification were significantly associated with overexpression of HNRNPC, ITGA5, HMGA2 and SRSF3, and low expression of ARID2. CONCLUSIONS HNRNPC, ITGA5, HMGA2, SRSF3, ALDH3A1 and ARID2 genes were associated with EMT process. Over- or under-expression of these genes is associated with worse stages of OSCC and/or worse prognosis of the tumor. Further studies on this topic are needed in different countries to be able to confirm these results, since the detection of these genes can help to know which tumors have a worse prognosis.
Collapse
Affiliation(s)
- Carmen Vallina
- School of Medicine and Dentistry, Oviedo University, Julián clavería s/n, 33006 Oviedo, Spain
| | - Rosa María López-Pintor
- ORALMED Research Group, Department of Dental Clinical Specialties, School of Dentistry, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - José González-Serrano
- ORALMED Research Group, Department of Dental Clinical Specialties, School of Dentistry, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Juan Carlos de Vicente
- ORALMED Research Group, Department of Oral and Maxillofacial Surgery, Hospital Central Universitario de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Asturias, Spain.
| | - Gonzalo Hernández
- ORALMED Research Group, Department of Dental Clinical Specialties, School of Dentistry, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Corina Lorz
- Molecular Oncology Unit, Environmental and Technological Energy Research Center (CIEMAT), Avd. Complutense 40, 28040, Spain; Research Institute 12 de Octubre i+12, University Hospital 12 de Octubre, Ave Córdoba s/n, 28041, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Ave Monforte de Lemos 3-5, 28029 Madrid, Spain.
| |
Collapse
|
4
|
PRKCA Overexpression Is Frequent in Young Oral Tongue Squamous Cell Carcinoma Patients and Is Associated with Poor Prognosis. Cancers (Basel) 2021; 13:cancers13092082. [PMID: 33923093 PMCID: PMC8123332 DOI: 10.3390/cancers13092082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
Oral tongue squamous cell carcinomas (OTSCCs) have an increasing incidence in young patients, and many have an aggressive course of disease. The objective of this study was to identify candidate prognostic protein markers associated with early-onset OTSCC. We performed an exploratory screening for differential protein expression in younger (≤45 years) versus older (>45 years) OTSCC patients in The Cancer Genome Atlas (TCGA) cohort (n = 97). Expression of candidate markers was then validated in an independent Austrian OTSCC patient group (n = 34) by immunohistochemistry. Kaplan-Meier survival estimates were computed, and genomic and mRNA enrichment in silico analyses were performed. Overexpression of protein kinase C alpha (PRKCA) was significantly more frequent among young patients of both the TCGA (p = 0.0001) and the Austrian cohort (p = 0.02), associated with a negative anamnesis for alcohol consumption (p = 0.009) and tobacco smoking (p = 0.02) and poorer overall survival (univariate p = 0.02, multivariate p< 0.01). Within the young subgroup, both overall and disease-free survival were significantly decreased in patients with PRKCA overexpression (both p < 0.001). TCGA mRNA enrichment analysis revealed 332 mRNAs with significant differential expression in PRKCA-upregulated versus PRKCA-downregulated OTSCC (all FDR ≤ 0.01). Our findings suggest that PRKCA overexpression may be a hallmark of a novel molecular subtype of early-onset alcohol- and tobacco-negative high-risk OTSCC. Further analysis of the molecular PRKCA interactome may decipher the underlying mechanisms of carcinogenesis and clinicopathological behavior of PRKCA-overexpressing OTSCC.
Collapse
|
5
|
Systematically Deciphering the Pharmacological Mechanism of Fructus Aurantii via Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6236135. [PMID: 33542744 PMCID: PMC7843179 DOI: 10.1155/2021/6236135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/26/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022]
Abstract
Fructus Aurantii (FA) is a traditional herbal medicine that has been widely used for thousands of years in China and possesses a variety of pharmacological effects. However, the active ingredients in FA and the potential mechanisms of its therapeutic effects have not been fully explored. Here, we applied a network pharmacology approach to explore the potential mechanisms of FA. We identified 5 active compounds from FA and a total of 209 potential targets to construct a protein-protein interaction (PPI) network. Prostaglandin G/H synthase 2 (PTGS2), heat shock protein 90 (HSP90), cell division protein kinase 6 (CDK6), caspase 3 (CASP3), apoptosis regulator Bcl-2 (Bcl-2), and matrix metalloproteinase-9 (MMP9) were identified as key targets of FA in the treatment of multiple diseases. Gene ontology (GO) enrichment demonstrated that FA was highly related to transcription initiation from RNA polymerase II promoter, DNA-templated transcription, positive regulation of transcription, regulation of apoptosis process, and regulation of cell proliferation. Various signaling pathways involved in the treatment of FA were identified, including pathways in cancer and pathways specifically related to prostate cancer, colorectal cancer, PI3K-Akt, apoptosis, and non-small-cell lung cancer. TP53, AKT1, caspase 3, MAPK3, PTGS2, and BAX/BCL2 were related key targets in the identified enriched pathways and the PPI network. In addition, our molecular docking results showed that the bioactive compounds in FA can tightly bind to most target proteins. This article reveals via network pharmacology research the possible mechanism(s) by which FA exerts its activities in the treatment of various diseases and lays a foundation for further experiments and the development of a rational clinical application of FA.
Collapse
|
6
|
Dai Y, Lv Q, Qi T, Qu J, Ni H, Liao Y, Liu P, Qu Q. Identification of hub methylated-CpG sites and associated genes in oral squamous cell carcinoma. Cancer Med 2020; 9:3174-3187. [PMID: 32155325 PMCID: PMC7196066 DOI: 10.1002/cam4.2969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/07/2020] [Accepted: 02/16/2020] [Indexed: 12/15/2022] Open
Abstract
To improve personalized diagnosis and prognosis for oral squamous cell carcinoma (OSCC) by identification of hub methylated‐CpG sites and associated genes, weighted gene comethylation network analysis (WGCNA) was performed to examine and identify hub modules and CpG sites correlated with OSCC. Here, WGCNA modeling yielded blue and brown comethylation modules that were significantly associated with OSCC status. Following screening of the differentially expressed genes (DEGs) from gene expression microarrays and differentially methylated‐CpG sites (DCGs), integrated multiomics analysis of the DEGs, DCGs, and hub CpG sites from the modules was performed to investigate their correlations. Expression levels of 16 CpG sites‐associated genes were negatively correlated with methylation patterns of promoter. Moreover, Kaplan‐Meier survival analysis of the hub CpG sites and associated genes was carried out using 2 public databases, MethSurv and GEPIA. Only 5 genes, ACTA1, ACTN2, OSR1, SYNGR1, and ZNF677, had significant overall survival using GEPIA. Hypermethylated‐CpG sites ACTN2‐cg21376883 and OSR1‐cg06509239 were found to be associated with poor survival by MethSurv. Methylation status of specific site and expression levels of associated genes were determined using clinical samples by quantitative methylation‐specific PCR and real‐time PCR. Pearson's correlation analysis showed that methylation levels of cg06509239 and cg18335068 were negatively related to OSR1 and ZNF677 expression levels, respectively. Our classification schema using multiomics analysis represents a screening framework for identification of hub CpG sites and associated genes.
Collapse
Affiliation(s)
- Yuxin Dai
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qiaoli Lv
- Department of Science and Education, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Tingting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongli Ni
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongkang Liao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Peng Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Kang W, Sun T, Tang D, Zhou J, Feng Q. Time-Course Transcriptome Analysis of Gingiva-Derived Mesenchymal Stem Cells Reveals That Fusobacterium nucleatum Triggers Oncogene Expression in the Process of Cell Differentiation. Front Cell Dev Biol 2020; 7:359. [PMID: 31993418 PMCID: PMC6970952 DOI: 10.3389/fcell.2019.00359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/11/2019] [Indexed: 01/04/2023] Open
Abstract
Fusobacterium nucleatum has pathogenic effects on oral squamous cell carcinoma and colon cancer, while the effects of continuously altered gene expression in normal human cells, as induced by persistent exposure to F. nucleatum, remain unclear. In this study, a microarray Significant Profiles (maSigPro) analysis was used to obtain the transcriptome profile of gingiva-derived mesenchymal stem cells (GMSCs) stimulated by F. nucleatum for 3, 7, 14, and 21 day, and the results revealed 790 (nine clusters) differentially expressed genes (DEGs), which were significantly enriched in cell adherens junctions and cancer-related pathways. On the basis of a short time-series expression miner (STEM) analysis, all the expressed genes in the GMSCs were grouped into 50 clusters according to dynamic gene expression patterns, and the expression levels of three gene clusters in the F. nucleatum-treated GMSCs were significantly different than the predicted values. Among the 790 DEGs, 50 tumor-associated genes (TAGs; such as L3MBTL4, CD163, CCCND2, CADM1, BCL7A, and IGF1) and five core dynamic DEGs (PLCG2, CHI3L2, L3MBTL4, SH2D2A, and NLRP3) were identified during F. nucleatum stimulation. Results from a GeneMANIA database analysis showed that PLCG2, CHI3L2, SH2D2A, and NLRP3 and 20 other proteins formed a complex network of which 12 genes were enriched in cancer-related pathways. Based on the five core dynamic DEGs, the related microRNAs (miRNAs) and transcription factors (TFs) were obtained from public resources, and an integrated network composed of the related TFs, miRNAs, and mRNAs was constructed. The results indicated that these genes were regulated by several miRNAs, such as miR-372-3p, miR-603, and miR-495-3p, and several TFs, including CREB3, GATA2, and SOX4. Our study suggests that long-term stimulation by F. nucleatum may trigger the expression of cancer-related genes in normal gingiva-derived stem cells.
Collapse
Affiliation(s)
- Wenyan Kang
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Periodontology, School of Stomatology, Shandong University, Jinan, China
| | - Tianyong Sun
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Di Tang
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jiannan Zhou
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
8
|
Wu L, Jiang Y, Zheng Z, Li H, Cai M, Pathak JL, Li Z, Huang L, Zeng M, Zheng H, Ouyang K, Gao J. mRNA and P-element-induced wimpy testis-interacting RNA profile in chemical-induced oral squamous cell carcinoma mice model. Exp Anim 2019; 69:168-177. [PMID: 31748426 PMCID: PMC7220707 DOI: 10.1538/expanim.19-0042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs), a novel class of noncoding RNAs, are involved in the carcinogenesis. However, the functional significance of piRNAs in oral squamous cell carcinoma (OSCC) remains unknown. In the present study, we used chemical carcinogen 4-nitroquinoline-1-oxide (4NQO) induced OSCC mouse model. piRNAs and mRNAs were profiled using next-generation sequencing in the tongue tumor tissues from 4NQO induction and healthy tongue tissues from control mice. Furthermore, we analyzed the differential gene expression of human OSCC in Gene Expression Omnibus (GEO) database. According to the common differentially expressed genes in the 4NQO model and human OSCC tissues, piRNAs and mRNAs network were established based on informatics method. A total of 14 known piRNAs and 435 novel predicted piRNAs were differently expressed in tumor tissue compared to healthy tissue. Among differently expressed piRNAs 260 were downregulated, and 189 were upregulated. The mRNA targets for the differentially expressed piRNAs were identified using RNAhybrid software. Primary immunodeficiency and herpes simplex infection were the most enriched pathways. A total of 22 mRNAs overlapped in human and mice OSCC. Moreover, we established the regulatory network of 11 mRNAs, including Tmc5, Galnt6, Spedf, Mybl2, Muc5b, Six31, Pigr, Lamc2, Mmp13, Mal, and Mamdc2, and 11 novel piRNAs. Our data showed the interaction between piRNAs and mRNAs in OSCC, which might provide new insights in the development of diagnostic biomarkers and therapeutic targets of OSCC.
Collapse
Affiliation(s)
- Lihong Wu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
| | - Yingtong Jiang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
| | - Zhichao Zheng
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
| | - Hongtao Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, Guangdong 510230, China
| | - Meijuan Cai
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
| | - Zhicong Li
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
| | - Lihuan Huang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
| | - Mingtao Zeng
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China.,Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| | - Huade Zheng
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510006, China
| | - Kexiong Ouyang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
| | - Jie Gao
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
| |
Collapse
|
9
|
Lai H, Xu G, Meng H, Zhu H. Association of SP1 rs1353058818 and STAT3 rs1053004 gene polymorphisms with human tongue squamous cell carcinoma. Biosci Rep 2019; 39:BSR20190955. [PMID: 31270251 PMCID: PMC6646232 DOI: 10.1042/bsr20190955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 01/08/2023] Open
Abstract
Objective: To study the association between SP1 rs1353058818 and STAT3 rs1053004 gene polymorphisms and risk of human tongue squamous cell carcinoma (TSCC).Methods: Sanger sequencing was used to determine the genotypes of SP1 rs1353058818 and STAT3 rs1053004 loci in 240 TSCC patients and 240 controls. Levels of hsa-miR-149-5p and hsa-miR-21-5p and expression levels of SP1 and STAT3 proteins in tumor tissues and adjacent normal tissues of TSCC patients were ascertained.Results: Carrying the SP1 rs1353058818 locus deletion allele was a high risk factor for TSCC (OR = 2.997, 95% CI: 1.389-6.466, P = 0.003). The STAT3 rs1053004 locus A allele was a protective factor for TSCC (OR = 0.604, 95% CI: 0.460-0.793, P < 0.001). There was a negative correlation between SP1 mRNA and hsa-miR-149-5p in tumor and adjacent normal tissues (r = -0.81, -0.77). The expression of SP1 protein in tumor tissues of the SP1 rs1353058818 locus DD genotype was significantly higher than in tissues of the ID type, and in tissues of type II it was the lowest. STAT3 mRNA was positively correlated with hsa-miR-21-5p in tumor and adjacent normal tissues (r = 0.75, 0.78). The expression level of STAT3 protein in tumor tissues of patients with STAT3 rs1053004 locus GG genotype was significantly higher than in patients with type GA, and it was the lowest in patients with type AA.Conclusion: Polymorphisms in the SP1 rs1353058818 and STAT3 rs1053004 loci are associated with the risk of human TSCC.
Collapse
Affiliation(s)
- Heqing Lai
- Department of Dentistry, Zhejiang Hospital, China
| | - Guochao Xu
- Department of Dentistry, Zhejiang Hospital, China
| | - Haifeng Meng
- Department of Oral surgery, Hang Zhou Dental Hospital, China
| | - Haiying Zhu
- Department of Dentistry, Xiacheng Hospital of Integrated Traditional Chinese and Western Medicine, China
| |
Collapse
|
10
|
Patel MS, Bowen DK, Tassone NM, Gould AD, Kochan KS, Firmiss PR, Kukulka NA, Devine MY, Li B, Gong EM, Dettman RW. The Homeodomain Transcription Factor NKX3.1 Modulates Bladder Outlet Obstruction Induced Fibrosis in Mice. Front Pediatr 2019; 7:446. [PMID: 31781523 PMCID: PMC6861332 DOI: 10.3389/fped.2019.00446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/15/2019] [Indexed: 12/29/2022] Open
Abstract
Fibrosis is an irreversible remodeling process characterized by the deposition of collagen in the extracellular matrix of various organs through a variety of pathologies in children, leading to the stiffening of healthy tissues and organ dysfunction. Despite the prevalence of fibrotic disease in children, large gaps exist in our understanding of the mechanisms that lead to fibrosis, and there are currently no therapies to treat or reverse it. We previously observed that castration significantly reduces fibrosis in the bladders of male mice that have been partially obstructed. Here, we investigated if the expression of androgen response genes were altered in mouse bladders after partial bladder outlet obstruction (PO). Using a QPCR microarray and QRTPCR we found that PO was sufficient to increase expression of the androgen response gene Nkx3.1. Consistent with this was an increase in the expression of NKX3.1 protein. Immunofluorescent antibody localization demonstrated nuclear NKX3.1 in most bladder cells after PO. We tested if genetic deletion of Nkx3.1 alters remodeling of the bladder wall after PO. After PO, Nkx3.1 KO/KO bladders underwent remodeling, demonstrating smaller bladder area, thickness, and bladder: body weight ratios than obstructed, wild type controls. Remarkably, Nkx3.1 KO/KO specifically affected histological parameters of fibrosis, including reduced collagen to muscle ratio. Loss of Nkx3.1 altered collagen and smooth muscle cytoskeletal gene expression following PO which supported our histologic findings. Together these findings indicated that after PO, Nkx3.1 expression is induced in the bladder and that it mediates important pathways that lead to tissue fibrosis. As Nkx3.1 is an androgen response gene, our data suggest a possible mechanism by which fibrosis is mediated in male mice and opens the possibility of a molecular pathway mediated by NKX3.1 that could explain sexual dimorphism in bladder fibrosis.
Collapse
Affiliation(s)
- Mehul S Patel
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Diana K Bowen
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Gong Laboratory, Division of Pediatric Urology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Nicholas M Tassone
- Gong Laboratory, Division of Pediatric Urology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Andrew D Gould
- Gong Laboratory, Division of Pediatric Urology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Kirsten S Kochan
- Gong Laboratory, Division of Pediatric Urology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Paula R Firmiss
- Gong Laboratory, Division of Pediatric Urology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Natalie A Kukulka
- Gong Laboratory, Division of Pediatric Urology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Megan Y Devine
- Gong Laboratory, Division of Pediatric Urology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Belinda Li
- Department of Urology, Loyola University Medical Center, Maywood, IL, United States
| | - Edward M Gong
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Gong Laboratory, Division of Pediatric Urology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Robert W Dettman
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
11
|
Chakraborty P, Karmakar T, Arora N, Mukherjee G. Immune and genomic signatures in oral (head and neck) cancer. Heliyon 2018; 4:e00880. [PMID: 30417146 PMCID: PMC6218671 DOI: 10.1016/j.heliyon.2018.e00880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/22/2018] [Accepted: 10/20/2018] [Indexed: 12/25/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is responsible for a large number of deaths each year. Oral cancer is the most frequent subtype of HNSCC. Historically, oral cancer has been associated with an increase in the consumption of tobacco and alcohol products, seen especially in the Asian subcontinent. It has also been associated with infection by the human papilloma virus (HPV), particularly strain HPV16. Treatment usually involves a multidisciplinary approach of surgery combined with chemotherapy and radiation. The advent of immunotherapy has broadened the scope for treatment. A better immune response to the tumour can also elicit the action of other therapeutic approaches. A heightened immune response, on the other hand, can lead to resistant tumour formation through the process of immunoediting. Molecular profiling of the tumour microenvironment (TME) can provide us with better insight into the mechanism and progression of the disease, ultimately opening up new therapeutic options. High-throughput molecular profiling techniques over the past decade have enabled us to appreciate the heterogeneity of the TME. In this review, we will be describing the clinicopathological role of the immune and genomic landscape in oral cancer. This study will update readers on the several immunological and genetic factors that can play an important function as predictive and prognostic biomarkers in various forms of head and neck cancer, with a special emphasis on oral carcinoma.
Collapse
|
12
|
Zhong L, Liu Y, Wang K, He Z, Gong Z, Zhao Z, Yang Y, Gao X, Li F, Wu H, Zhang S, Chen L. Biomarkers: paving stones on the road towards the personalized precision medicine for oral squamous cell carcinoma. BMC Cancer 2018; 18:911. [PMID: 30241505 PMCID: PMC6151070 DOI: 10.1186/s12885-018-4806-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
Traditional therapeutics have encountered a bottleneck caused by diagnosis delay and subjective and unreliable assessment. Biomarkers can overcome this bottleneck and guide us toward personalized precision medicine for oral squamous cell carcinoma. To achieve this, it is important to efficiently and accurately screen out specific biomarkers from among the huge number of molecules. Progress in omics-based high-throughput technology has laid a solid foundation for biomarker discovery. With credible and systemic biomarker models, more precise and personalized diagnosis and assessment would be achieved and patients would be more likely to be cured and have a higher quality of life. However, this is not straightforward owing to the complexity of molecules involved in tumorigenesis. In this context, there is a need to focus on tumor heterogeneity and homogeneity, which are discussed in detail. In this review, we aim to provide an understanding of biomarker discovery and application for precision medicine of oral squamous cell carcinoma, and have a strong belief that biomarker will pave the road toward future precision medicine.
Collapse
Affiliation(s)
- Liang Zhong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Yutong Liu
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Kai Wang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Zhijing He
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Zhili Zhao
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Yaocheng Yang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Xiaofei Gao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Fangjie Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Hanjiang Wu
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Sheng Zhang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| | - Lin Chen
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|
13
|
Bruserud Ø, Costea DE, Laakso S, Garty BZ, Mathisen E, Mäkitie A, Mäkitie O, Husebye ES. Oral Tongue Malignancies in Autoimmune Polyendocrine Syndrome Type 1. Front Endocrinol (Lausanne) 2018; 9:463. [PMID: 30177913 PMCID: PMC6109689 DOI: 10.3389/fendo.2018.00463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022] Open
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) or Autoimmune polyendocrine syndrome type-1 (APS-1) (APECED, OMIM 240300) is a rare, childhood onset, monogenic disease caused by mutations in the Autoimmune Regulator (AIRE) gene. The overall mortality is increased compared to the general population and a major cause of death includes malignant diseases, especially oral and esophageal cancers. We here present a case series of four APS-1 patients with oral tongue cancers, an entity not described in detail previously. Scrutiny of history and clinical phenotypes indicate that chronic mucocutaneous candidiasis and smoking are significant risk factors. Preventive measures and early diagnosis are important to successfully manage this potentially fatal disease.
Collapse
Affiliation(s)
- Øyvind Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Centre for Autoimmune Disorders, University of Bergen, Bergen, Norway
| | - Daniela-Elena Costea
- Gade Laboratory for Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Saila Laakso
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Ben-Zion Garty
- Allergy and Immunology Clinic, Schneider Children's Medical Center of Israel, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eirik Mathisen
- Department of Otolaryngology-Head and Neck Surgery, Østfold Hospital, Sarpsborg, Norway
| | - Antti Mäkitie
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Eystein S. Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Centre for Autoimmune Disorders, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- *Correspondence: Eystein S. Husebye
| |
Collapse
|