1
|
Ieviņa L, Dubņika A. Navigating the combinations of platelet-rich fibrin with biomaterials used in maxillofacial surgery. Front Bioeng Biotechnol 2024; 12:1465019. [PMID: 39434715 PMCID: PMC11491360 DOI: 10.3389/fbioe.2024.1465019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Platelet-rich fibrin (PRF) is a protein matrix with growth factors and immune cells extracted from venous blood via centrifugation. Previous studies proved it a beneficial biomaterial for bone and soft tissue regeneration in dental surgeries. Researchers have combined PRF with a wide range of biomaterials for composite preparation as it is biocompatible and easily acquirable. The results of the studies are difficult to compare due to varied research methods and the fact that researchers focus more on the PRF preparation protocol and less on the interaction of PRF with the chosen material. Here, the literature from 2013 to 2024 is reviewed to help surgeons and researchers navigate the field of commonly used biomaterials in maxillofacial surgeries (calcium phosphate bone grafts, polymers, metal nanoparticles, and novel composites) and their combinations with PRF. The aim is to help the readers select a composite that suits their planned research or medical case. Overall, PRF combined with bone graft materials shows potential for enhancing bone regeneration both in vivo and in vitro. Still, results vary across studies, necessitating standardized protocols and extensive clinical trials. Overviewed methods showed that the biological and mechanical properties of the PRF and material composites can be altered depending on the PRF preparation and incorporation process.
Collapse
Affiliation(s)
- Lauma Ieviņa
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubņika
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
2
|
Thermal treatment at 500°C significantly reduces the reaction to irregular tricalcium phosphate granules as foreign bodies: An in vivo study. Acta Biomater 2022. [DOI: 10.1016/j.actbio.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Multinucleated Giant Cells Induced by a Silk Fibroin Construct Express Proinflammatory Agents: An Immunohistological Study. MATERIALS 2021; 14:ma14144038. [PMID: 34300957 PMCID: PMC8307820 DOI: 10.3390/ma14144038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
Multinucleated giant cells (MNGCs) are frequently observed in the implantation areas of different biomaterials. The main aim of the present study was to analyze the long-term polarization pattern of the pro- and anti-inflammatory phenotypes of macrophages and MNGCs for 180 days to better understand their role in the success or failure of biomaterials. For this purpose, silk fibroin (SF) was implanted in a subcutaneous implantation model of Wistar rats as a model for biomaterial-induced MNGCs. A sham operation was used as a control for physiological wound healing. The expression of different inflammatory markers (proinflammatory M1: CCR-7, iNos; anti-inflammatory M2: CD-206, CD-163) and tartrate-resistant acid phosphatase (TRAP) and CD-68 were identified using immunohistochemical staining. The results showed significantly higher numbers of macrophages and MNGCs within the implantation bed of SF-expressed M1 markers, compared to M2 markers. Interestingly, the expression of proinflammatory markers was sustained over the long observation period of 180 days. By contrast, the control group showed a peak of M1 macrophages only on day 3. Thereafter, the inflammatory pattern shifted to M2 macrophages. No MNGCs were observed in the control group. To the best of our knowledge, this is study is the first to outline the persistence of pro-inflammatory MNGCs within the implantation bed of SF and to describe their long-term kinetics over 180 days. Clinically, these results are highly relevant to understand the role of biomaterial-induced MNGCs in the long term. These findings suggest that tailored physicochemical properties may be a key to avoiding extensive inflammatory reactions and achieving clinical success. Therefore, further research is needed to elucidate the correlation between proinflammatory MNGCs and the physicochemical characteristics of the implanted biomaterial.
Collapse
|
4
|
Thermal treatment at 500 °C significantly reduces the reaction to irregular tricalcium phosphate granules as foreign bodies: An in vivo study. Acta Biomater 2021; 121:621-636. [PMID: 33249227 DOI: 10.1016/j.actbio.2020.11.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/28/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Evaporation of phosphate species during thermal treatment (> 400 °C) of calcium phosphates leads to the formation of an alkaline layer on their surface. The aim of this study was to evaluate the hypothesis that the biological response of thermally treated calcium phosphates is modified by the presence of such an alkaline layer on their surface. For this purpose, 0.125-0.180 mm α- and β-tricalcium phosphate (TCP) granules were obtained by crushing and size classification, with some being subjected to thermal treatment at 500 °C. The four types of granules (α-TCP, β-TCP, α-TCP-500 °C, and β-TCP-500 °C) were implanted subcutaneously and orthotopically in rats. Sham operations served as control. Subcutaneously, α-TCP and β-TCP induced significantly more multinucleated giant cells (MNGCs) than calcined granules. Most of the induced MNGCs were TRAP-negative, CD-68 positive and cathepsin K-negative, reflecting a typical indication of a reaction with a foreign body. The vessel density was significantly higher in the α-TCP and β-TCP groups than it was in the α-TCP-500 °C and β-TCP-500 °C groups. In the femur model, β-TCP-500 °C induced significantly more new bone formation than that induced by β-TCP. The granule size was also significantly larger in the β-TCP-500 °C group, making it more resistant to degradation than β-TCP. The MNGC density was higher in the α-TCP and β-TCP groups than in the α-TCP-500 °C and β-TCP-500 °C groups, including cathepsin-positive, CD-68 positive, TRAP-positive and TRAP-negative MNGCs. In conclusion, this study confirms that the biological response of calcium phosphates was affected by the presence of an alkaline layer on their surface. Thermally-treated α-TCP and β-TCP granules produced significantly fewer MNGCs and were significantly less degraded than non-thermally-treated α-TCP and β-TCP granules. Thermally treating α-TCP and β-TCP granules shifts the reaction from a foreign body reaction towards a physiological reaction by downregulating the number of induced MNGCs and enhancing degradation resistance.
Collapse
|
5
|
Zhang Y, Chen Y, Zhao B, Gao J, Xia L, Xing F, Kong Y, Li Y, Zhang G. Detection of Type I and III collagen in porcine acellular matrix using HPLC-MS. Regen Biomater 2020; 7:577-582. [PMID: 33365143 PMCID: PMC7748446 DOI: 10.1093/rb/rbaa032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Acellular matrix (ACM) has been widely used as a biomaterial. As the main component of ACM, collagen type and content show influence on the material properties. In this research, the collagen in ACM from different tissues of pig were determined by detection of marker peptides. The marker peptides of Type I and III collagen were identified from the digested collagen standards using ions trap mass spectrometry (LCQ). The relationship between the abundance of marker peptide and collagen concentration was established using triple quadrupole mass spectrometer (TSQ). The contents of Type I and III collagen in ACM from different tissues were determined. The method was further verified by hydroxyproline determination. The results showed that, the sum of Type I and III collagen contents in the ACM from small intestinal submucosa, dermis and Achilles tendon of pig were about 87.59, 81.41 and 61.13%, respectively, which were close to the total collagen contents in these tissues. The results proved that this method could quantitatively detect the collagen with different types in the ACM of various tissues.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yi Chen
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing 100026, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing 100026, China
| | - Jianping Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| | - Leilei Xia
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing 100026, China
| | - Fangyu Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| | - Yingjun Kong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| | - Yongchao Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
- Correspondence address. State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China. Tel: +86-1082613421; Fax: +86-1082613421; E-mail: (G.Z.); School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China. Tel: +86-15936529310; Fax: +86-15936529310; E-mail: (Y.L.)
| | - Guifeng Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
- Correspondence address. State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China. Tel: +86-1082613421; Fax: +86-1082613421; E-mail: (G.Z.); School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China. Tel: +86-15936529310; Fax: +86-15936529310; E-mail: (Y.L.)
| |
Collapse
|
6
|
Udeabor SE, Herrera-Vizcaíno C, Sader R, Kirkpatrick CJ, Al-Maawi S, Ghanaati S. Characterization of the Cellular Reaction to a Collagen-Based Matrix: An In Vivo Histological and Histomorphometrical Analysis. MATERIALS 2020; 13:ma13122730. [PMID: 32560130 PMCID: PMC7344884 DOI: 10.3390/ma13122730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 01/01/2023]
Abstract
The permeability and inflammatory tissue reaction to Mucomaix® matrix (MM), a non- cross-linked collagen-based matrix was evaluated in both ex vivo and in vivo settings. Liquid platelet rich fibrin (PRF), a blood concentrate system, was used to assess its capacity to absorb human proteins and interact with blood cells ex vivo. In the in vivo aspect, 12 Wister rats had MM implanted subcutaneously, whereas another 12 rats (control) were sham-operated without biomaterial implantation. On days 3, 15 and 30, explantation was completed (four rats per time-point) to evaluate the tissue reactions to the matrix. Data collected were statistically analyzed using analysis of variance (ANOVA) and Tukey multiple comparisons tests (GraphPad Prism 8). The matrix absorbed the liquid PRF in the ex vivo study. Day 3 post-implantation revealed mild tissue inflammatory reaction with presence of mononuclear cells in the implantation site and on the biomaterial surface (mostly CD68-positive macrophages). The control group at this stage had more mononuclear cells than the test group. From day 15, multinucleated giant cells (MNGCs) were seen in the implantation site and the outer third of the matrix with marked increase on day 30 and spread to the matrix core. The presence of these CD68-positive MNGCs was associated with significant matrix vascularization. The matrix degraded significantly over the study period, but its core was still visible as of day 30 post-implantation. The high permeability and fast degradation properties of MM were highlighted.
Collapse
Affiliation(s)
- Samuel Ebele Udeabor
- Department for Oral, Cranio-Maxillofacial, and Facial Plastic Surgery, Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany; (S.E.U.); (C.H.-V.); (R.S.); (C.J.K.); (S.A.-M.)
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Khalid University, Abha 61471, Saudi Arabia
| | - Carlos Herrera-Vizcaíno
- Department for Oral, Cranio-Maxillofacial, and Facial Plastic Surgery, Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany; (S.E.U.); (C.H.-V.); (R.S.); (C.J.K.); (S.A.-M.)
| | - Robert Sader
- Department for Oral, Cranio-Maxillofacial, and Facial Plastic Surgery, Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany; (S.E.U.); (C.H.-V.); (R.S.); (C.J.K.); (S.A.-M.)
| | - C. James Kirkpatrick
- Department for Oral, Cranio-Maxillofacial, and Facial Plastic Surgery, Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany; (S.E.U.); (C.H.-V.); (R.S.); (C.J.K.); (S.A.-M.)
| | - Sarah Al-Maawi
- Department for Oral, Cranio-Maxillofacial, and Facial Plastic Surgery, Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany; (S.E.U.); (C.H.-V.); (R.S.); (C.J.K.); (S.A.-M.)
| | - Shahram Ghanaati
- Department for Oral, Cranio-Maxillofacial, and Facial Plastic Surgery, Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany; (S.E.U.); (C.H.-V.); (R.S.); (C.J.K.); (S.A.-M.)
- Correspondence: ; Tel.: +49-69-6301-4492
| |
Collapse
|